These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 31072483)
41. Model systems for flavoenzyme activity: flavin-functionalised SAMs as models for probing redox modulation through hydrogen bonding. Cooke G; Duclairoir FM; John P; Polwart N; Rotello VM Chem Commun (Camb); 2003 Oct; (19):2468-9. PubMed ID: 14587735 [TBL] [Abstract][Full Text] [Related]
42. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874 [TBL] [Abstract][Full Text] [Related]
43. Effects of environment on flavin reactivity in morphinone reductase: analysis of enzymes displaying differential charge near the N-1 atom and C-2 carbonyl region of the active-site flavin. Craig DH; Barna T; Moody PC; Bruce NC; Chapman SK; Munro AW; Scrutton NS Biochem J; 2001 Oct; 359(Pt 2):315-23. PubMed ID: 11583577 [TBL] [Abstract][Full Text] [Related]
44. Direct electrochemistry of the flavin domain of assimilatory nitrate reductase: effects of NAD+ and NAD+ analogs. Barber MJ; Trimboli AJ; Nomikos S; Smith ET Arch Biochem Biophys; 1997 Sep; 345(1):88-96. PubMed ID: 9281315 [TBL] [Abstract][Full Text] [Related]
45. Studies by electron-paramagnetic-resonance spectroscopy and stopped-flow spectrophotometry on the mechanism of action of turkey liver xanthine dehydrogenase. Barber MJ; Bray RC; Lowe DJ; Coughlan MP Biochem J; 1976 Feb; 153(2):297-307. PubMed ID: 179533 [TBL] [Abstract][Full Text] [Related]
46. Covalent binding of flavins to RnfG and RnfD in the Rnf complex from Vibrio cholerae. Backiel J; Juárez O; Zagorevski DV; Wang Z; Nilges MJ; Barquera B Biochemistry; 2008 Oct; 47(43):11273-84. PubMed ID: 18831535 [TBL] [Abstract][Full Text] [Related]
47. Effect of pH on oxidation-reduction potentials of 8 alpha-N-imidazole-substituted flavins. Williamson G; Edmondson DE Biochemistry; 1985 Dec; 24(26):7790-7. PubMed ID: 4092039 [TBL] [Abstract][Full Text] [Related]
48. The redox centers of xanthine oxidase are on independent structural domains of the enzyme. Nichols MB; Low PS Arch Biochem Biophys; 1986 Nov; 250(2):488-97. PubMed ID: 3777944 [TBL] [Abstract][Full Text] [Related]
49. Sulfoxide reduction catalyzed by guinea pig liver aldehyde oxidase in combination with one-electron reducing flavoenzymes. Yoshihara S; Tatsumi K J Pharmacobiodyn; 1985 Dec; 8(12):996-1005. PubMed ID: 3834063 [TBL] [Abstract][Full Text] [Related]
50. Spectroelectrochemical investigation of a flavoprotein with a flavin-modified gold electrode. Nöll G; Kozma E; Grandori R; Carey J; Schödl T; Hauska G; Daub J Langmuir; 2006 Feb; 22(5):2378-83. PubMed ID: 16489832 [TBL] [Abstract][Full Text] [Related]
51. To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Mattevi A Trends Biochem Sci; 2006 May; 31(5):276-83. PubMed ID: 16600599 [TBL] [Abstract][Full Text] [Related]
52. An in-depth view of potential dual effect of thymol in inhibiting xanthine oxidase activity: Electrochemical measurements in combination with four way PARAFAC analysis and molecular docking insights. Abbasi S; Gharaghani S; Benvidi A; Rezaeinasab M; Saboury AA Int J Biol Macromol; 2018 Nov; 119():1298-1310. PubMed ID: 30096398 [TBL] [Abstract][Full Text] [Related]
53. Molecular dissection of human methionine synthase reductase: determination of the flavin redox potentials in full-length enzyme and isolated flavin-binding domains. Wolthers KR; Basran J; Munro AW; Scrutton NS Biochemistry; 2003 Apr; 42(13):3911-20. PubMed ID: 12667082 [TBL] [Abstract][Full Text] [Related]
54. Stimulation of NADH oxidation by xanthine oxidase and polyvanadate in presence of some dehydrogenases and flavin compounds. Penta K; Gullapalli S; Rau M; Ramasarma T Mol Cell Biochem; 1991 Sep; 107(1):31-7. PubMed ID: 1784272 [TBL] [Abstract][Full Text] [Related]
55. Three Rings to Rule Them All: How Versatile Flavoenzymes Orchestrate the Structural Diversification of Natural Products. Toplak M; Teufel R Biochemistry; 2022 Jan; 61(2):47-56. PubMed ID: 34962769 [TBL] [Abstract][Full Text] [Related]
56. Machine Learning for Efficient Prediction of Protein Redox Potential: The Flavoproteins Case. Galuzzi BG; Mirarchi A; Viganò EL; De Gioia L; Damiani C; Arrigoni F J Chem Inf Model; 2022 Oct; 62(19):4748-4759. PubMed ID: 36126254 [TBL] [Abstract][Full Text] [Related]
57. Facile oxidation of leucomethylene blue and dihydroflavins by artemisinins: relationship with flavoenzyme function and antimalarial mechanism of action. Haynes RK; Chan WC; Wong HN; Li KY; Wu WK; Fan KM; Sung HH; Williams ID; Prosperi D; Melato S; Coghi P; Monti D ChemMedChem; 2010 Aug; 5(8):1282-99. PubMed ID: 20629071 [TBL] [Abstract][Full Text] [Related]
58. Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Garattini E; Mendel R; Romão MJ; Wright R; Terao M Biochem J; 2003 May; 372(Pt 1):15-32. PubMed ID: 12578558 [TBL] [Abstract][Full Text] [Related]
59. Anion-π Interactions in Flavoproteins Involve a Substantial Charge-Transfer Component. Yurenko YP; Bazzi S; Marek R; Kozelka J Chemistry; 2017 Mar; 23(14):3246-3250. PubMed ID: 28098402 [TBL] [Abstract][Full Text] [Related]
60. The covalent FAD of monoamine oxidase: structural and functional role and mechanism of the flavinylation reaction. Edmondson DE; Newton-Vinson P Antioxid Redox Signal; 2001 Oct; 3(5):789-806. PubMed ID: 11761328 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]