BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31072487)

  • 1. Vibrational spectroscopy of flavoproteins.
    Iuliano JN; French JB; Tonge PJ
    Methods Enzymol; 2019; 620():189-214. PubMed ID: 31072487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman spectra of flavin bound in flavodoxins and in other flavoproteins. Evidence for structural variations in the flavin-binding region.
    Visser AJ; Vervoort J; O'Kane DJ; Lee J; Carreira LA
    Eur J Biochem; 1983 Apr; 131(3):639-45. PubMed ID: 6840072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Raman spectroscopy to monitor the solvent-exposed and "buried" forms of flavin in p-hydroxybenzoate hydroxylase.
    Zheng Y; Dong J; Palfey BA; Carey PR
    Biochemistry; 1999 Dec; 38(51):16727-32. PubMed ID: 10606503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance Raman spectroscopy.
    Li J; Kitagawa T
    Methods Mol Biol; 2014; 1146():377-400. PubMed ID: 24764099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoactivation mechanisms of flavin-binding photoreceptors revealed through ultrafast spectroscopy and global analysis methods.
    Mathes T; van Stokkum IH; Kennis JT
    Methods Mol Biol; 2014; 1146():401-42. PubMed ID: 24764100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the chemistries of the substrate and flavin ring system of p-hydroxybenzoate hydroxylase by raman difference spectroscopy.
    Clarkson J; Palfey BA; Carey PR
    Biochemistry; 1997 Oct; 36(41):12560-6. PubMed ID: 9376361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman study on reduced flavin in purple intermediate of flavoenzyme: use of [4-carbonyl-18O]-enriched flavin.
    Nishina Y; Sato K; Miura R; Matsui K; Shiga K
    J Biochem; 1998 Jul; 124(1):200-8. PubMed ID: 9644264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast infrared spectroscopy of an isotope-labeled photoactivatable flavoprotein.
    Haigney A; Lukacs A; Zhao RK; Stelling AL; Brust R; Kim RR; Kondo M; Clark I; Towrie M; Greetham GM; Illarionov B; Bacher A; Römisch-Margl W; Fischer M; Meech SR; Tonge PJ
    Biochemistry; 2011 Mar; 50(8):1321-8. PubMed ID: 21218799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring electronic structure properties of flavins and flavoproteins by electronic Stark spectroscopy.
    Stanley RJ; van Galen CJ
    Methods Enzymol; 2019; 620():215-250. PubMed ID: 31072488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman study on the oxidized and anionic semiquinone forms of flavocytochrome b2 and L-lactate monooxygenase. Influence of the structure and environment of the isoalloxazine ring on the flavin function.
    Tegoni M; Gervais M; Desbois A
    Biochemistry; 1997 Jul; 36(29):8932-46. PubMed ID: 9220981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing protein-ligand interactions in solution and single crystals by Raman spectroscopy.
    Altose MD; Zheng Y; Dong J; Palfey BA; Carey PR
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3006-11. PubMed ID: 11248022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond-to-nanosecond dynamics of flavin mononucleotide monitored by stimulated Raman spectroscopy and simulations.
    Andrikopoulos PC; Liu Y; Picchiotti A; Lenngren N; Kloz M; Chaudhari AS; Precek M; Rebarz M; Andreasson J; Hajdu J; Schneider B; Fuertes G
    Phys Chem Chem Phys; 2020 Mar; 22(12):6538-6552. PubMed ID: 31994556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Raman study on the C(4)=O stretching mode of flavins in flavoenzymes: hydrogen bonding at the C(4)=O moiety.
    Hazekawa I; Nishina Y; Sato K; Shichiri M; Miura R; Shiga K
    J Biochem; 1997 Jun; 121(6):1147-54. PubMed ID: 9354390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbation of the ground-state electronic structure of FMN by the conserved cysteine in phototropin LOV2 domains.
    Alexandre MT; van Grondelle R; Hellingwerf KJ; Robert B; Kennis JT
    Phys Chem Chem Phys; 2008 Nov; 10(44):6693-702. PubMed ID: 18989482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-triggered FTIR difference spectra of FAD in aqueous solution and bound to flavoproteins.
    Wille G; Ritter M; Friedemann R; Mäntele W; Hübner G
    Biochemistry; 2003 Dec; 42(50):14814-21. PubMed ID: 14674755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrational spectroscopy of flavoproteins.
    Macdonald ID
    Methods Mol Biol; 1999; 131():125-38. PubMed ID: 10494546
    [No Abstract]   [Full Text] [Related]  

  • 17. Femtosecond stimulated Raman spectroscopy of flavin after optical excitation.
    Weigel A; Dobryakov A; Klaumünzer B; Sajadi M; Saalfrank P; Ernsting NP
    J Phys Chem B; 2011 Apr; 115(13):3656-80. PubMed ID: 21410155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in flavin and flavoprotein optical spectroscopy.
    Stanley RJ
    Antioxid Redox Signal; 2001 Oct; 3(5):847-66. PubMed ID: 11761332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary reactions of the LOV2 domain of phototropin studied with ultrafast mid-infrared spectroscopy and quantum chemistry.
    Alexandre MT; Domratcheva T; Bonetti C; van Wilderen LJ; van Grondelle R; Groot ML; Hellingwerf KJ; Kennis JT
    Biophys J; 2009 Jul; 97(1):227-37. PubMed ID: 19580760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of the 8-methyl group to the vibrational normal modes of flavin mononucleotide and its 5-methyl semiquinone radical.
    Eisenberg AS; Schelvis JP
    J Phys Chem A; 2008 Jul; 112(27):6179-89. PubMed ID: 18547041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.