BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31072495)

  • 1. Investigations of two-component flavin-dependent monooxygenase systems.
    Robbins JM; Ellis HR
    Methods Enzymol; 2019; 620():399-422. PubMed ID: 31072495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The FMN-dependent two-component monooxygenase systems.
    Ellis HR
    Arch Biochem Biophys; 2010 May; 497(1-2):1-12. PubMed ID: 20193654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deletional studies to investigate the functional role of a dynamic loop region of alkanesulfonate monooxygenase.
    Xiong J; Ellis HR
    Biochim Biophys Acta; 2012 Jul; 1824(7):898-906. PubMed ID: 22564769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Evaluation of the π-Helix in the NAD(P)H:FMN Reductase of the Alkanesulfonate Monooxygenase System.
    Musila JM; L Forbes D; Ellis HR
    Biochemistry; 2018 Jul; 57(30):4469-4477. PubMed ID: 29979040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of a Flavin-Free FMN Reductase to a Canonical Flavoprotein through Modification of the π-Helix.
    Musila JM; Ellis HR
    Biochemistry; 2016 Nov; 55(46):6389-6394. PubMed ID: 27806563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered mechanism of the alkanesulfonate FMN reductase with the monooxygenase enzyme.
    Gao B; Ellis HR
    Biochem Biophys Res Commun; 2005 Jun; 331(4):1137-45. PubMed ID: 15882995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia coli.
    Abdurachim K; Ellis HR
    J Bacteriol; 2006 Dec; 188(23):8153-9. PubMed ID: 16997955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic importance of the substrate binding order for the FMNH2-dependent alkanesulfonate monooxygenase enzyme.
    Zhan X; Carpenter RA; Ellis HR
    Biochemistry; 2008 Feb; 47(7):2221-30. PubMed ID: 18198899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-component flavin-dependent monooxygenase involved in actinorhodin biosynthesis in Streptomyces coelicolor.
    Valton J; Filisetti L; Fontecave M; Nivière V
    J Biol Chem; 2004 Oct; 279(43):44362-9. PubMed ID: 15297451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of flavin reduction in the alkanesulfonate monooxygenase system.
    Gao B; Ellis HR
    Biochim Biophys Acta; 2007 Mar; 1774(3):359-67. PubMed ID: 17289450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional role of a conserved arginine residue located on a mobile loop of alkanesulfonate monooxygenase.
    Carpenter RA; Xiong J; Robbins JM; Ellis HR
    Biochemistry; 2011 Jul; 50(29):6469-77. PubMed ID: 21671586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system.
    Ellis HR
    Bioorg Chem; 2011 Dec; 39(5-6):178-84. PubMed ID: 21880344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Not as easy as π: An insertional residue does not explain the π-helix gain-of-function in two-component FMN reductases.
    McFarlane JS; Hagen RA; Chilton AS; Forbes DL; Lamb AL; Ellis HR
    Protein Sci; 2019 Jan; 28(1):123-134. PubMed ID: 30171650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reduced flavin-dependent monooxygenase SfnG converts dimethylsulfone to methanesulfinate.
    Wicht DK
    Arch Biochem Biophys; 2016 Aug; 604():159-66. PubMed ID: 27392454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.
    Sucharitakul J; Phongsak T; Entsch B; Svasti J; Chaiyen P; Ballou DP
    Biochemistry; 2007 Jul; 46(29):8611-23. PubMed ID: 17595116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-Dependent Mobile Loop Conformational Changes in Alkanesulfonate Monooxygenase from Accelerated Molecular Dynamics.
    Thakur A; Somai S; Yue K; Ippolito N; Pagan D; Xiong J; Ellis HR; Acevedo O
    Biochemistry; 2020 Sep; 59(38):3582-3593. PubMed ID: 32881481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligomeric Changes Regulate Flavin Transfer in Two-Component FMN Reductases Involved in Sulfur Metabolism.
    Aloh CH; Zeczycki TN; Ellis HR
    Biochemistry; 2023 Sep; 62(18):2751-2762. PubMed ID: 37651343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of Escherichia coli SsuE: defining a general catalytic cycle for FMN reductases of the flavodoxin-like superfamily.
    Driggers CM; Dayal PV; Ellis HR; Karplus PA
    Biochemistry; 2014 Jun; 53(21):3509-19. PubMed ID: 24816272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.