BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31072496)

  • 1. The styrene monooxygenase system.
    Gassner GT
    Methods Enzymol; 2019; 620():423-453. PubMed ID: 31072496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase.
    Kantz A; Chin F; Nallamothu N; Nguyen T; Gassner GT
    Arch Biochem Biophys; 2005 Oct; 442(1):102-16. PubMed ID: 16140257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FAD C(4a)-hydroxide stabilized in a naturally fused styrene monooxygenase.
    Tischler D; Schlömann M; van Berkel WJ; Gassner GT
    FEBS Lett; 2013 Nov; 587(23):3848-52. PubMed ID: 24157359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and mechanism of styrene monooxygenase reductase: new insight into the FAD-transfer reaction.
    Morrison E; Kantz A; Gassner GT; Sazinsky MH
    Biochemistry; 2013 Sep; 52(35):6063-75. PubMed ID: 23909369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase.
    Kantz A; Gassner GT
    Biochemistry; 2011 Feb; 50(4):523-32. PubMed ID: 21166448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation.
    Corrado ML; Knaus T; Mutti FG
    Chembiochem; 2018 Apr; 19(7):679-686. PubMed ID: 29378090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Styrene monooxygenases, indole monooxygenases and related flavoproteins applied in bioremediation and biocatalysis.
    Tischler D; Kumpf A; Eggerichs D; Heine T
    Enzymes; 2020; 47():399-425. PubMed ID: 32951830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.
    Heine T; Tucker K; Okonkwo N; Assefa B; Conrad C; Scholtissek A; Schlömann M; Gassner G; Tischler D
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1590-1610. PubMed ID: 27830466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and ligand binding properties of the epoxidase component of styrene monooxygenase .
    Ukaegbu UE; Kantz A; Beaton M; Gassner GT; Rosenzweig AC
    Biochemistry; 2010 Mar; 49(8):1678-88. PubMed ID: 20055497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1.
    Gröning JA; Kaschabek SR; Schlömann M; Tischler D
    Arch Microbiol; 2014 Dec; 196(12):829-45. PubMed ID: 25116410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides.
    Toda H; Imae R; Komio T; Itoh N
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):407-18. PubMed ID: 22258641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regenerable copper anode for the Cu(I)-mediated reduction of FAD in the electroenzymatic styrene epoxidation reaction.
    Amongre R; Gassner G
    Bioelectrochemistry; 2021 Feb; 137():107679. PubMed ID: 33120296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-terminus determines activity and specificity of styrene monooxygenase reductases.
    Heine T; Scholtissek A; Westphal AH; van Berkel WJH; Tischler D
    Biochim Biophys Acta Proteins Proteom; 2017 Dec; 1865(12):1770-1780. PubMed ID: 28888693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asp305Gly mutation improved the activity and stability of the styrene monooxygenase for efficient epoxide production in Pseudomonas putida KT2440.
    Tan C; Zhang X; Zhu Z; Xu M; Yang T; Osire T; Yang S; Rao Z
    Microb Cell Fact; 2019 Jan; 18(1):12. PubMed ID: 30678678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterisation of the NADH:acceptor reductase component of xylene monooxygenase encoded by the TOL plasmid pWW0 of Pseudomonas putida mt-2.
    Shaw JP; Harayama S
    Eur J Biochem; 1992 Oct; 209(1):51-61. PubMed ID: 1327782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterization of ferredoxin and flavin adenine dinucleotide binding domains of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath).
    Blazyk JL; Lippard SJ
    Biochemistry; 2002 Dec; 41(52):15780-94. PubMed ID: 12501207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis.
    Hollmann F; Lin PC; Witholt B; Schmid A
    J Am Chem Soc; 2003 Jul; 125(27):8209-17. PubMed ID: 12837091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evolution of styrene monooxygenase from Pseudomonas putida CA-3 for improved epoxide synthesis.
    Gursky LJ; Nikodinovic-Runic J; Feenstra KA; O'Connor KE
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):995-1004. PubMed ID: 19568744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production, purification, and characterization of soluble NADH-flavin Oxidoreductase (StyB) from Pseudomonas putida SN1.
    Yeo YJ; Shin S; Lee SG; Park S; Jeong YJ
    J Microbiol Biotechnol; 2009 Apr; 19(4):362-7. PubMed ID: 19420991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.