These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 31073120)

  • 1. Direct conversion of fibroblasts to osteoblasts as a novel strategy for bone regeneration in elderly individuals.
    Chang Y; Cho B; Kim S; Kim J
    Exp Mol Med; 2019 May; 51(5):1-8. PubMed ID: 31073120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of Osteoblasts by Direct Reprogramming of Mouse Fibroblasts.
    Zhu H; Wu JY
    Methods Mol Biol; 2020; 2155():201-212. PubMed ID: 32474879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanogel tectonic porous 3D scaffold for direct reprogramming fibroblasts into osteoblasts and bone regeneration.
    Sato Y; Yamamoto K; Horiguchi S; Tahara Y; Nakai K; Kotani SI; Oseko F; Pezzotti G; Yamamoto T; Kishida T; Kanamura N; Akiyoshi K; Mazda O
    Sci Rep; 2018 Oct; 8(1):15824. PubMed ID: 30361649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial reprogramming as a therapeutic approach for heart disease: A state-of-the-art review.
    Talkhabi M
    J Cell Biochem; 2019 Sep; 120(9):14247-14261. PubMed ID: 31081174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone tissue engineering in osteoporosis.
    Jakob F; Ebert R; Ignatius A; Matsushita T; Watanabe Y; Groll J; Walles H
    Maturitas; 2013 Jun; 75(2):118-24. PubMed ID: 23562167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model.
    Saito A; Ooki A; Nakamura T; Onodera S; Hayashi K; Hasegawa D; Okudaira T; Watanabe K; Kato H; Onda T; Watanabe A; Kosaki K; Nishimura K; Ohtaka M; Nakanishi M; Sakamoto T; Yamaguchi A; Sueishi K; Azuma T
    Stem Cell Res Ther; 2018 Jan; 9(1):12. PubMed ID: 29357927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct phenotypic conversion of human fibroblasts into functional osteoblasts triggered by a blockade of the transforming growth factor-β signal.
    Yamamoto K; Kishida T; Nakai K; Sato Y; Kotani SI; Nishizawa Y; Yamamoto T; Kanamura N; Mazda O
    Sci Rep; 2018 May; 8(1):8463. PubMed ID: 29855543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct conversion of human fibroblasts into functional osteoblasts by defined factors.
    Yamamoto K; Kishida T; Sato Y; Nishioka K; Ejima A; Fujiwara H; Kubo T; Yamamoto T; Kanamura N; Mazda O
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6152-7. PubMed ID: 25918395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprogramming of Dermal Fibroblasts into Osteo-Chondrogenic Cells with Elevated Osteogenic Potency by Defined Transcription Factors.
    Wang Y; Wu MH; Cheung MPL; Sham MH; Akiyama H; Chan D; Cheah KSE; Cheung M
    Stem Cell Reports; 2017 Jun; 8(6):1587-1599. PubMed ID: 28528696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequenced Somatic Cell Reprogramming and Differentiation Inside Nested Hydrogel Droplets.
    Green DW; Watson JA; Watson GS; Stamboulis A
    Adv Biosyst; 2020 Aug; 4(8):e2000071. PubMed ID: 32597033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of cell-cell interactions on the regeneration of soft tissue-to-bone interface.
    Wang IE; Lu HH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():783-6. PubMed ID: 17946859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced Pluripotent Stem Cells as a new Strategy for Osteogenesis and Bone Regeneration.
    Lou X
    Stem Cell Rev Rep; 2015 Aug; 11(4):645-51. PubMed ID: 26022504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progenitor and stem cells for bone and cartilage regeneration.
    El Tamer MK; Reis RL
    J Tissue Eng Regen Med; 2009 Jul; 3(5):327-37. PubMed ID: 19418440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-based therapies of liver diseases: age-related challenges.
    Yarygin KN; Lupatov AY; Kholodenko IV
    Clin Interv Aging; 2015; 10():1909-24. PubMed ID: 26664104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective Review of Mesenchymal Stem Cells Differentiation into Osteoblasts.
    Garg P; Mazur MM; Buck AC; Wandtke ME; Liu J; Ebraheim NA
    Orthop Surg; 2017 Feb; 9(1):13-19. PubMed ID: 28276640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in the role and mechanism of fibroblasts in fracture healing.
    Wang H; Qi LL; Shema C; Jiang KY; Ren P; Wang H; Wang L
    Front Endocrinol (Lausanne); 2024; 15():1350958. PubMed ID: 38469138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct conversion of mouse embryonic fibroblast to osteoblast cells using hLMP-3 with Yamanaka factors.
    Ahmed MF; El-Sayed AK; Chen H; Zhao R; Jin K; Zuo Q; Zhang Y; Li B
    Int J Biochem Cell Biol; 2019 Jan; 106():84-95. PubMed ID: 30453092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine.
    Xie M; Tang S; Li K; Ding S
    Acc Chem Res; 2017 May; 50(5):1202-1211. PubMed ID: 28453285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies and Challenges to Improve Cellular Programming-Based Approaches for Heart Regeneration Therapy.
    Jiang L; Liang J; Huang W; Wu Z; Paul C; Wang Y
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33081233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering kidney cells: reprogramming and directed differentiation to renal tissues.
    Kaminski MM; Tosic J; Pichler R; Arnold SJ; Lienkamp SS
    Cell Tissue Res; 2017 Jul; 369(1):185-197. PubMed ID: 28560692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.