BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 31073526)

  • 1. Effect of Weightlessness on the 3D Structure Formation and Physiologic Function of Human Cancer Cells.
    Chen ZY; Guo S; Li BB; Jiang N; Li A; Yan HF; Yang HM; Zhou JL; Li CL; Cui Y
    Biomed Res Int; 2019; 2019():4894083. PubMed ID: 31073526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue Engineering Under Microgravity Conditions-Use of Stem Cells and Specialized Cells.
    Grimm D; Egli M; Krüger M; Riwaldt S; Corydon TJ; Kopp S; Wehland M; Wise P; Infanger M; Mann V; Sundaresan A
    Stem Cells Dev; 2018 Jun; 27(12):787-804. PubMed ID: 29596037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions.
    Aleshcheva G; Bauer J; Hemmersbach R; Slumstrup L; Wehland M; Infanger M; Grimm D
    Basic Clin Pharmacol Toxicol; 2016 Oct; 119 Suppl 3():26-33. PubMed ID: 26826674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NASA's Ground-Based Microgravity Simulation Facility.
    Zhang Y; Richards JT; Hellein JL; Johnson CM; Woodall J; Sorenson T; Neelam S; Ruby AMJ; Levine HG
    Methods Mol Biol; 2022; 2368():281-299. PubMed ID: 34647262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid and Bubble Flow Detach Adherent Cancer Cells to Form Spheroids on a Random Positioning Machine.
    Cortés-Sánchez JL; Melnik D; Sandt V; Kahlert S; Marchal S; Johnson IRD; Calvaruso M; Liemersdorf C; Wuest SL; Grimm D; Krüger M
    Cells; 2023 Nov; 12(22):. PubMed ID: 37998400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem Cell Culture Under Simulated Microgravity.
    Anil-Inevi M; Sarigil O; Kizilkaya M; Mese G; Tekin HC; Ozcivici E
    Adv Exp Med Biol; 2020; 1298():105-132. PubMed ID: 32424490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Women's health issues and space-based medical technologies.
    Becker JL
    Earth Space Rev; 1994; 3(2):15-9. PubMed ID: 11540549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of stem cells under outer-space microgravity and ground-based microgravity simulation.
    Zhang C; Li L; Chen J; Wang J
    Cell Biol Int; 2015 Jun; 39(6):647-56. PubMed ID: 25712570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture.
    Wuest SL; Richard S; Kopp S; Grimm D; Egli M
    Biomed Res Int; 2015; 2015():971474. PubMed ID: 25649075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV).
    Rucci N; Migliaccio S; Zani BM; Taranta A; Teti A
    J Cell Biochem; 2002; 85(1):167-79. PubMed ID: 11891860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Endothelial Cells in Space and in Simulated Microgravity - a Comparison on the Secretory Level.
    Krüger M; Pietsch J; Bauer J; Kopp S; Carvalho DTO; Baatout S; Moreels M; Melnik D; Wehland M; Egli M; Jayashree S; Kobberø SD; Corydon TJ; Nebuloni S; Gass S; Evert M; Infanger M; Grimm D
    Cell Physiol Biochem; 2019; 52(5):1039-1060. PubMed ID: 30977987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Fight against Cancer by Microgravity: The Multicellular Spheroid as a Metastasis Model.
    Grimm D; Schulz H; Krüger M; Cortés-Sánchez JL; Egli M; Kraus A; Sahana J; Corydon TJ; Hemmersbach R; Wise PM; Infanger M; Wehland M
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparing normal tissue cells for space flight experiments.
    Koch C; Kohn FP; Bauer J
    Prep Biochem Biotechnol; 2016; 46(2):208-13. PubMed ID: 25806650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine.
    Patel MJ; Liu W; Sykes MC; Ward NE; Risin SA; Risin D; Jo H
    J Cell Biochem; 2007 Jun; 101(3):587-99. PubMed ID: 17243119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signal transduction in T lymphocytes--a comparison of the data from space, the free fall machine and the random positioning machine.
    Schwarzenberg M; Pippia P; Meloni MA; Cossu G; Cogoli-Greuter M; Cogoli A
    Adv Space Res; 1999; 24(6):793-800. PubMed ID: 11542624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated microgravity decreases apoptosis in fetal fibroblasts.
    Beck M; Tabury K; Moreels M; Jacquet P; Van Oostveldt P; De Vos WH; Baatout S
    Int J Mol Med; 2012 Aug; 30(2):309-13. PubMed ID: 22614095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating alterations in the cellular envelope of Staphylococcus aureus in simulated microgravity using a random positioning machine.
    Singh S; Vidyasagar PB; Kulkarni GR
    Life Sci Space Res (Amst); 2021 Aug; 30():1-8. PubMed ID: 34281660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microgravity simulations with human lymphocytes in the free fall machine and in the random positioning machine.
    Schwarzenberg M; Pippia P; Meloni MA; Cossu G; Cogoli-Greuter M; Cogoli A
    J Gravit Physiol; 1998 Jul; 5(1):P23-6. PubMed ID: 11542350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulated Microgravity Effects on Nonsmall Cell Lung Cancer Cell Proliferation and Migration.
    Chung JH; Ahn CB; Son KH; Yi E; Son HS; Kim HS; Lee SH
    Aerosp Med Hum Perform; 2017 Feb; 88(2):82-89. PubMed ID: 28095951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies of cell biology experimentation in space.
    Cogoli A
    J Gravit Physiol; 2004 Mar; 11(1):111-6. PubMed ID: 16145820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.