These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31073935)

  • 1. From MEAs to MOAs: The Next Generation of Bioelectronic Interfaces for Neuronal Cultures.
    Spanu A; Tedesco M; Martinoia S; Bonfiglio A
    Adv Neurobiol; 2019; 22():155-167. PubMed ID: 31073935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Multiparametric Cellular Analysis by Micro Organic Charge-modulated Field-effect Transistor Arrays.
    Spanu A; Bonfiglio A
    J Vis Exp; 2021 Sep; (175):. PubMed ID: 34605824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale, High-Resolution Microelectrode Arrays for Interrogation of Neurons and Networks.
    Obien MEJ; Frey U
    Adv Neurobiol; 2019; 22():83-123. PubMed ID: 31073933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active High-Density Electrode Arrays: Technology and Applications in Neuronal Cell Cultures.
    Lonardoni D; Amin H; Zordan S; Boi F; Lecomte A; Angotzi GN; Berdondini L
    Adv Neurobiol; 2019; 22():253-273. PubMed ID: 31073940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Multielectrode Arrays for Neurobiology Applications.
    Malerba M; Amin H; Angotzi GN; Maccione A; Berdondini L
    Methods Mol Biol; 2018; 1771():147-157. PubMed ID: 29633211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An organic transistor-based system for reference-less electrophysiological monitoring of excitable cells.
    Spanu A; Lai S; Cosseddu P; Tedesco M; Martinoia S; Bonfiglio A
    Sci Rep; 2015 Mar; 5():8807. PubMed ID: 25744085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in three-dimensional microelectrode array technologies for in vitro and in vivo cardiac and neuronal interfaces.
    Choi JS; Lee HJ; Rajaraman S; Kim DH
    Biosens Bioelectron; 2021 Jan; 171():112687. PubMed ID: 33059168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A patterned polystyrene-based microelectrode array for in vitro neuronal recordings.
    Hammack A; Rihani RT; Black BJ; Pancrazio JJ; Gnade BE
    Biomed Microdevices; 2018 Jun; 20(2):48. PubMed ID: 29909439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacing cells with organic transistors: a review of in vitro and in vivo applications.
    Spanu A; Martines L; Bonfiglio A
    Lab Chip; 2021 Mar; 21(5):795-820. PubMed ID: 33565540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century.
    Johnstone AF; Gross GW; Weiss DG; Schroeder OH; Gramowski A; Shafer TJ
    Neurotoxicology; 2010 Aug; 31(4):331-50. PubMed ID: 20399226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graphene microelectrode arrays for neural activity detection.
    Du X; Wu L; Cheng J; Huang S; Cai Q; Jin Q; Zhao J
    J Biol Phys; 2015 Sep; 41(4):339-47. PubMed ID: 25712492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisite Intracellular Recordings by MEA.
    Spira ME; Huang SH; Shmoel N; Erez H
    Adv Neurobiol; 2019; 22():125-153. PubMed ID: 31073934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BioMEA: a 256-channel MEA system with integrated electronics.
    Charvet G; Billoint O; Rousseau L; Yvert B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():171-4. PubMed ID: 18001916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous recording of electrical and metabolic activity of cardiac cells
    Spanu A; Martines L; Tedesco M; Martinoia S; Bonfiglio A
    Front Bioeng Biotechnol; 2022; 10():945575. PubMed ID: 35992349
    [No Abstract]   [Full Text] [Related]  

  • 19. Transistor array with an organotypic brain slice: field potential records and synaptic currents.
    Besl B; Fromherz P
    Eur J Neurosci; 2002 Mar; 15(6):999-1005. PubMed ID: 11918660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An organic neurophysiological tool for neuronal metabolic activity monitoring.
    Spanu A; Tedesco MT; Martines L; Martinoia S; Bonfiglio A
    APL Bioeng; 2018 Dec; 2(4):046105. PubMed ID: 31069327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.