These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31074080)

  • 21. Mechanism Investigations on Water Gas Shift Reaction over Cu(111), Cu(100), and Cu(211) Surfaces.
    Li Z; Li N; Wang N; Zhou B; Yin P; Song B; Yu J; Yang Y
    ACS Omega; 2022 Feb; 7(4):3514-3521. PubMed ID: 35128259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DFT insights into structural effects of Ni-Cu/CeO
    Salcedo A; Irigoyen B
    Phys Chem Chem Phys; 2021 Feb; 23(6):3826-3836. PubMed ID: 33533765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism.
    Burch R
    Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeO(x)/TiO2(110) catalysts.
    Bruix A; Rodriguez JA; Ramírez PJ; Senanayake SD; Evans J; Park JB; Stacchiola D; Liu P; Hrbek J; Illas F
    J Am Chem Soc; 2012 May; 134(21):8968-74. PubMed ID: 22563752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanostructured Cu(x)Ce1-xO2-y mixed oxide catalysts: characterization and WGS activity tests.
    Pintar A; Batista J; Hocevar S
    J Colloid Interface Sci; 2007 Mar; 307(1):145-57. PubMed ID: 17188286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Cu/Pt near-surface alloy for water-gas shift catalysis.
    Knudsen J; Nilekar AU; Vang RT; Schnadt J; Kunkes EL; Dumesic JA; Mavrikakis M; Besenbacher F
    J Am Chem Soc; 2007 May; 129(20):6485-90. PubMed ID: 17469820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The most active Cu facet for low-temperature water gas shift reaction.
    Zhang Z; Wang SS; Song R; Cao T; Luo L; Chen X; Gao Y; Lu J; Li WX; Huang W
    Nat Commun; 2017 Sep; 8(1):488. PubMed ID: 28887563
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alcohol-Induced Strong Metal-Support Interactions in a Supported Copper/ZnO Catalyst.
    Jin S; Zhang Z; Li D; Wang Y; Lian C; Zhu M
    Angew Chem Int Ed Engl; 2023 May; 62(21):e202301563. PubMed ID: 36920707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lattice oxygen self-spillover on reducible oxide supported metal cluster: the water-gas shift reaction on Cu/CeO
    Su YQ; Xia GJ; Qin Y; Ding S; Wang YG
    Chem Sci; 2021 May; 12(23):8260-8267. PubMed ID: 34194718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanopattering in CeOx/Cu(111): A New Type of Surface Reconstruction and Enhancement of Catalytic Activity.
    Senanayake SD; Sadowski JT; Evans J; Kundu S; Agnoli S; Yang F; Stacchiola D; Flege JI; Hrbek J; Rodriguez JA
    J Phys Chem Lett; 2012 Apr; 3(7):839-43. PubMed ID: 26286407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interface-Confined FeO
    Xu X; Fu Q; Gan L; Zhu J; Bao X
    J Phys Chem B; 2018 Jan; 122(2):984-990. PubMed ID: 28914538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water-gas-shift reaction on molybdenum carbide surfaces: essential role of the oxycarbide.
    Liu P; Rodriguez JA
    J Phys Chem B; 2006 Oct; 110(39):19418-25. PubMed ID: 17004800
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Charge polarization at a Au-TiC interface and the generation of highly active and selective catalysts for the low-temperature water-gas shift reaction.
    Rodriguez JA; Ramírez PJ; Asara GG; Viñes F; Evans J; Liu P; Ricart JM; Illas F
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11270-4. PubMed ID: 25196121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Methanol Synthesis and Decomposition Reactions Catalyzed by a Model Catalyst Developed from Bis(1,5-diphenyl-1,3,5-pentanetrionato)dicopper(II)/Silica.
    Ranaweera SA; Henry WP; White MG
    ACS Omega; 2017 Sep; 2(9):5949-5961. PubMed ID: 31457849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct Identification of Active Surface Species for the Water-Gas Shift Reaction on a Gold-Ceria Catalyst.
    Fu XP; Guo LW; Wang WW; Ma C; Jia CJ; Wu K; Si R; Sun LD; Yan CH
    J Am Chem Soc; 2019 Mar; 141(11):4613-4623. PubMed ID: 30807152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfaces and Oxygen Vacancies-Enriched Catalysts Derived from Cu-Mn-Al Hydrotalcite towards High-Efficient Water-Gas Shift Reaction.
    Li H; Xiao Z; Liu P; Wang H; Geng J; Lei H; Zhuo O
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Influence of Cu and Al Additives on Reduction of Iron(III) Oxide: In Situ XRD and XANES Study.
    Bulavchenko OA; Vinokurov ZS; Saraev AA; Tsapina AM; Trigub AL; Gerasimov EY; Gladky AY; Fedorov AV; Yakovlev VA; Kaichev VV
    Inorg Chem; 2019 Apr; 58(8):4842-4850. PubMed ID: 30946575
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction.
    Rodriguez JA; Ma S; Liu P; Hrbek J; Evans J; Pérez M
    Science; 2007 Dec; 318(5857):1757-60. PubMed ID: 18079397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction of stabilized bulk-nano interfaces for highly promoted inverse CeO
    Yan H; Yang C; Shao WP; Cai LH; Wang WW; Jin Z; Jia CJ
    Nat Commun; 2019 Aug; 10(1):3470. PubMed ID: 31375672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced Methanol Synthesis over Self-Limited ZnO
    Song T; Li R; Wang J; Dong C; Feng X; Ning Y; Mu R; Fu Q
    Angew Chem Int Ed Engl; 2024 Jan; 63(5):e202316888. PubMed ID: 38078622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.