These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 31074082)
1. A flexible and robust method for assessing conditional association and conditional concordance. Liu X; Ning J; Cheng Y; Huang X; Li R Stat Med; 2019 Aug; 38(19):3656-3668. PubMed ID: 31074082 [TBL] [Abstract][Full Text] [Related]
2. Inverse probability of censoring weighted estimates of Kendall's τ for gap time analyses. Lakhal-Chaieb L; Cook RJ; Lin X Biometrics; 2010 Dec; 66(4):1145-52. PubMed ID: 20337629 [TBL] [Abstract][Full Text] [Related]
3. Local linear estimation of concordance probability with application to covariate effects models on association for bivariate failure-time data. Ding AA; Hsieh JJ; Wang W Lifetime Data Anal; 2015 Jan; 21(1):42-74. PubMed ID: 24323067 [TBL] [Abstract][Full Text] [Related]
4. ANALYSIS OF DEPENDENTLY CENSORED DATA BASED ON QUANTILE REGRESSION. Ji S; Peng L; Li R; Lynn MJ Stat Sin; 2014; 24(3):1411-1432. PubMed ID: 25382953 [TBL] [Abstract][Full Text] [Related]
5. Quantile regression for doubly censored data. Ji S; Peng L; Cheng Y; Lai H Biometrics; 2012 Mar; 68(1):101-12. PubMed ID: 21950348 [TBL] [Abstract][Full Text] [Related]
6. Nonparametric analysis of bivariate gap time with competing risks. Huang CY; Wang C; Wang MC Biometrics; 2016 Sep; 72(3):780-90. PubMed ID: 26990686 [TBL] [Abstract][Full Text] [Related]
7. Gene-based association analysis for bivariate time-to-event data through functional regression with copula models. Wei Y; Liu Y; Sun T; Chen W; Ding Y Biometrics; 2020 Jun; 76(2):619-629. PubMed ID: 31625595 [TBL] [Abstract][Full Text] [Related]
8. Quantile regression analysis of censored longitudinal data with irregular outcome-dependent follow-up. Sun X; Peng L; Manatunga A; Marcus M Biometrics; 2016 Mar; 72(1):64-73. PubMed ID: 26237289 [TBL] [Abstract][Full Text] [Related]
9. Eliminating bias due to censoring in Kendall's tau estimators for quasi-independence of truncation and failure. Austin MD; Betensky RA Comput Stat Data Anal; 2014 May; 73():16-26. PubMed ID: 24505164 [TBL] [Abstract][Full Text] [Related]
10. A profile conditional likelihood approach for the semiparametric transformation regression model with missing covariates. Chen HY; Little RJ Lifetime Data Anal; 2001 Sep; 7(3):207-24. PubMed ID: 11677827 [TBL] [Abstract][Full Text] [Related]
11. Quantile association regression on bivariate survival data. Chen LW; Cheng Y; Ding Y; Li R Can J Stat; 2021 Sep; 49(3):612-636. PubMed ID: 34720345 [TBL] [Abstract][Full Text] [Related]
12. A doubly robust censoring unbiased transformation. Rubin D; van der Laan MJ Int J Biostat; 2007; 3(1):Article 4. PubMed ID: 22550646 [TBL] [Abstract][Full Text] [Related]
13. Inferences on the association parameter in copula models for bivariate survival data. Shih JH; Louis TA Biometrics; 1995 Dec; 51(4):1384-99. PubMed ID: 8589230 [TBL] [Abstract][Full Text] [Related]
14. Quantile regression for left-truncated semicompeting risks data. Li R; Peng L Biometrics; 2011 Sep; 67(3):701-10. PubMed ID: 21133883 [TBL] [Abstract][Full Text] [Related]
15. Optimal estimation for regression models on τ-year survival probability. Kwak M; Kim J; Jung SH J Biopharm Stat; 2015; 25(3):539-47. PubMed ID: 24897607 [TBL] [Abstract][Full Text] [Related]