These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 31074190)
21. A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction. Kim JH; Shin D; Lee J; Baek DS; Shin TJ; Kim YT; Jeong HY; Kwak JH; Kim H; Joo SH ACS Nano; 2020 Feb; 14(2):1990-2001. PubMed ID: 31999424 [TBL] [Abstract][Full Text] [Related]
22. Oxide Nanocrystal Model Catalysts. Huang W Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790 [TBL] [Abstract][Full Text] [Related]
23. Surface-specific deposition of catalytic metal nanocrystals on hollow carbon nanospheres via galvanic replacement reactions of carbon-encapsulated MnO nanoparticles. Lee DG; Kim SM; Jeong H; Kim J; Lee IS ACS Nano; 2014 May; 8(5):4510-21. PubMed ID: 24754512 [TBL] [Abstract][Full Text] [Related]
24. Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Zhang H; Jin M; Xia Y Chem Soc Rev; 2012 Dec; 41(24):8035-49. PubMed ID: 23080521 [TBL] [Abstract][Full Text] [Related]
25. Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Porter NS; Wu H; Quan Z; Fang J Acc Chem Res; 2013 Aug; 46(8):1867-77. PubMed ID: 23461578 [TBL] [Abstract][Full Text] [Related]
26. Novel Au Catalysis Strategy for the Synthesis of Au@Pt Core-Shell Nanoelectrocatalyst with Self-Controlled Quasi-Monolayer Pt Skin. Zhang Y; Li X; Li K; Xue B; Zhang C; Du C; Wu Z; Chen W ACS Appl Mater Interfaces; 2017 Sep; 9(38):32688-32697. PubMed ID: 28884575 [TBL] [Abstract][Full Text] [Related]
28. Reactions of late transition metal complexes with molecular oxygen. Boisvert L; Goldberg KI Acc Chem Res; 2012 Jun; 45(6):899-910. PubMed ID: 22578038 [TBL] [Abstract][Full Text] [Related]
29. Supported gold catalysis: from small molecule activation to green chemical synthesis. Liu X; He L; Liu YM; Cao Y Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524 [TBL] [Abstract][Full Text] [Related]
30. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Soldevila-Barreda JJ; Metzler-Nolte N Chem Rev; 2019 Jan; 119(2):829-869. PubMed ID: 30618246 [TBL] [Abstract][Full Text] [Related]
31. Heterogeneous catalysts need not be so "heterogeneous": monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. Kang Y; Li M; Cai Y; Cargnello M; Diaz RE; Gordon TR; Wieder NL; Adzic RR; Gorte RJ; Stach EA; Murray CB J Am Chem Soc; 2013 Feb; 135(7):2741-7. PubMed ID: 23351091 [TBL] [Abstract][Full Text] [Related]
32. Rational Design of Hierarchical, Porous, Co-Supported, N-Doped Carbon Architectures as Electrocatalyst for Oxygen Reduction. Qiao M; Wang Y; Mamat X; Chen A; Zou G; Li L; Hu G; Zhang S; Hu X; Voiry D ChemSusChem; 2020 Feb; 13(4):741-748. PubMed ID: 31846205 [TBL] [Abstract][Full Text] [Related]
33. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions. Su Y; Zhu Y; Jiang H; Shen J; Yang X; Zou W; Chen J; Li C Nanoscale; 2014 Dec; 6(24):15080-9. PubMed ID: 25369741 [TBL] [Abstract][Full Text] [Related]
34. Metal-organic framework-immobilized polyhedral metal nanocrystals: reduction at solid-gas interface, metal segregation, core-shell structure, and high catalytic activity. Aijaz A; Akita T; Tsumori N; Xu Q J Am Chem Soc; 2013 Nov; 135(44):16356-9. PubMed ID: 24138338 [TBL] [Abstract][Full Text] [Related]
35. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis. Drake T; Ji P; Lin W Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753 [TBL] [Abstract][Full Text] [Related]
36. Pt-Pd Bimetal Popcorn Nanocrystals: Enhancing the Catalytic Performance by Combination Effect of Stable Multipetals Nanostructure and Highly Accessible Active Sites. Ma Y; Yin L; Cao G; Huang Q; He M; Wei W; Zhao H; Zhang D; Wang M; Yang T Small; 2018 Apr; 14(14):e1703613. PubMed ID: 29468819 [TBL] [Abstract][Full Text] [Related]
37. PtNi Nanocrystals Supported on Hollow Carbon Spheres: Enhancing the Electrocatalytic Performance through High-Temperature Annealing and Electrochemical CO Stripping Treatments. Zhang C; Zhang R; Li X; Chen W ACS Appl Mater Interfaces; 2017 Sep; 9(35):29623-29632. PubMed ID: 28813593 [TBL] [Abstract][Full Text] [Related]
38. Electrostatically regulated ternary-doped carbon foams with exposed active sites as metal-free oxygen reduction electrocatalysts. Sher Shah MSA; Lee J; Rauf A; Park JH; Lim B; Yoo PJ Nanoscale; 2018 Nov; 10(41):19498-19508. PubMed ID: 30318532 [TBL] [Abstract][Full Text] [Related]
39. Hydrothermal Synthesis of Highly Dispersed Co Guan J; Zhang Z; Ji J; Dou M; Wang F ACS Appl Mater Interfaces; 2017 Sep; 9(36):30662-30669. PubMed ID: 28846370 [TBL] [Abstract][Full Text] [Related]
40. Simple one-pot synthesis of solid-core@porous-shell alloyed PtAg nanocrystals for the superior catalytic activity toward hydrogen evolution and glycerol oxidation. Weng X; Liu Q; Wang AJ; Yuan J; Feng JJ J Colloid Interface Sci; 2017 May; 494():15-21. PubMed ID: 28131029 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]