These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
638 related articles for article (PubMed ID: 31074627)
1. Optimization and Design of Magnetic Ferrite Nanoparticles with Uniform Tumor Distribution for Highly Sensitive MRI/MPI Performance and Improved Magnetic Hyperthermia Therapy. Du Y; Liu X; Liang Q; Liang XJ; Tian J Nano Lett; 2019 Jun; 19(6):3618-3626. PubMed ID: 31074627 [TBL] [Abstract][Full Text] [Related]
2. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Soleymani M; Khalighfard S; Khodayari S; Khodayari H; Kalhori MR; Hadjighassem MR; Shaterabadi Z; Alizadeh AM Sci Rep; 2020 Feb; 10(1):1695. PubMed ID: 32015364 [TBL] [Abstract][Full Text] [Related]
3. Effective heating of magnetic nanoparticle aggregates for in vivo nano-theranostic hyperthermia. Wang C; Hsu CH; Li Z; Hwang LP; Lin YC; Chou PT; Lin YY Int J Nanomedicine; 2017; 12():6273-6287. PubMed ID: 28894366 [TBL] [Abstract][Full Text] [Related]
4. High-performance iron oxide nanoparticles for magnetic particle imaging - guided hyperthermia (hMPI). Bauer LM; Situ SF; Griswold MA; Samia AC Nanoscale; 2016 Jun; 8(24):12162-9. PubMed ID: 27210742 [TBL] [Abstract][Full Text] [Related]
5. Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich's "magic (nano)bullet" for cancer theranostics? Datta NR; Krishnan S; Speiser DE; Neufeld E; Kuster N; Bodis S; Hofmann H Cancer Treat Rev; 2016 Nov; 50():217-227. PubMed ID: 27756009 [TBL] [Abstract][Full Text] [Related]
7. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Zhang ZQ; Song SC Biomaterials; 2016 Nov; 106():13-23. PubMed ID: 27543919 [TBL] [Abstract][Full Text] [Related]
8. Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy. Tay ZW; Chandrasekharan P; Chiu-Lam A; Hensley DW; Dhavalikar R; Zhou XY; Yu EY; Goodwill PW; Zheng B; Rinaldi C; Conolly SM ACS Nano; 2018 Apr; 12(4):3699-3713. PubMed ID: 29570277 [TBL] [Abstract][Full Text] [Related]
9. Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for T Shen Z; Chen T; Ma X; Ren W; Zhou Z; Zhu G; Zhang A; Liu Y; Song J; Li Z; Ruan H; Fan W; Lin L; Munasinghe J; Chen X; Wu A ACS Nano; 2017 Nov; 11(11):10992-11004. PubMed ID: 29039917 [TBL] [Abstract][Full Text] [Related]
10. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance. Dadfar SM; Camozzi D; Darguzyte M; Roemhild K; Varvarà P; Metselaar J; Banala S; Straub M; Güvener N; Engelmann U; Slabu I; Buhl M; van Leusen J; Kögerler P; Hermanns-Sachweh B; Schulz V; Kiessling F; Lammers T J Nanobiotechnology; 2020 Jan; 18(1):22. PubMed ID: 31992302 [TBL] [Abstract][Full Text] [Related]
11. Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia. Chen L; Wu Y; Wu H; Li J; Xie J; Zang F; Ma M; Gu N; Zhang Y Acta Biomater; 2019 Sep; 96():491-504. PubMed ID: 31302299 [TBL] [Abstract][Full Text] [Related]
12. IGF1 Receptor Targeted Theranostic Nanoparticles for Targeted and Image-Guided Therapy of Pancreatic Cancer. Zhou H; Qian W; Uckun FM; Wang L; Wang YA; Chen H; Kooby D; Yu Q; Lipowska M; Staley CA; Mao H; Yang L ACS Nano; 2015 Aug; 9(8):7976-91. PubMed ID: 26242412 [TBL] [Abstract][Full Text] [Related]
13. Magnetic nanocarriers: Evolution of spinel ferrites for medical applications. Amiri M; Salavati-Niasari M; Akbari A Adv Colloid Interface Sci; 2019 Mar; 265():29-44. PubMed ID: 30711796 [TBL] [Abstract][Full Text] [Related]
14. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe Zhou P; Zhao H; Wang Q; Zhou Z; Wang J; Deng G; Wang X; Liu Q; Yang H; Yang S Adv Healthc Mater; 2018 May; 7(9):e1701201. PubMed ID: 29356419 [TBL] [Abstract][Full Text] [Related]
15. Magnetic Particle Imaging of Macrophages Associated with Cancer: Filling the Voids Left by Iron-Based Magnetic Resonance Imaging. Makela AV; Gaudet JM; Schott MA; Sehl OC; Contag CH; Foster PJ Mol Imaging Biol; 2020 Aug; 22(4):958-968. PubMed ID: 31933022 [TBL] [Abstract][Full Text] [Related]
16. Iron oxide-gold core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance. Abed Z; Beik J; Laurent S; Eslahi N; Khani T; Davani ES; Ghaznavi H; Shakeri-Zadeh A J Cancer Res Clin Oncol; 2019 May; 145(5):1213-1219. PubMed ID: 30847551 [TBL] [Abstract][Full Text] [Related]
17. Therapeutic evaluation of magnetic hyperthermia using Fe3O4-aminosilane-coated iron oxide nanoparticles in glioblastoma animal model. Rego GNA; Mamani JB; Souza TKF; Nucci MP; Silva HRD; Gamarra LF Einstein (Sao Paulo); 2019 Aug; 17(4):eAO4786. PubMed ID: 31390427 [TBL] [Abstract][Full Text] [Related]
18. Fe Li Y; Zhang H Nanomedicine (Lond); 2019 Jun; 14(11):1493-1512. PubMed ID: 31215317 [TBL] [Abstract][Full Text] [Related]
19. Construction of iron oxide nanoparticle-based hybrid platforms for tumor imaging and therapy. Hu Y; Mignani S; Majoral JP; Shen M; Shi X Chem Soc Rev; 2018 Mar; 47(5):1874-1900. PubMed ID: 29376542 [TBL] [Abstract][Full Text] [Related]
20. Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Hayashi K; Nakamura M; Sakamoto W; Yogo T; Miki H; Ozaki S; Abe M; Matsumoto T; Ishimura K Theranostics; 2013; 3(6):366-76. PubMed ID: 23781284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]