These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 31074655)
1. A Fully Conditional Specification Approach to Multilevel Multiple Imputation with Latent Cluster Means. Keller BT; Du H Multivariate Behav Res; 2019; 54(1):149-150. PubMed ID: 31074655 [No Abstract] [Full Text] [Related]
2. A Comparison of Multilevel Imputation Schemes for Random Coefficient Models: Fully Conditional Specification and Joint Model Imputation with Random Covariance Matrices. Enders CK; Hayes T; Du H Multivariate Behav Res; 2018; 53(5):695-713. PubMed ID: 30693802 [TBL] [Abstract][Full Text] [Related]
3. A fully conditional specification approach to multilevel imputation of categorical and continuous variables. Enders CK; Keller BT; Levy R Psychol Methods; 2018 Jun; 23(2):298-317. PubMed ID: 28557466 [TBL] [Abstract][Full Text] [Related]
4. Biases in multilevel analyses caused by cluster-specific fixed-effects imputation. Speidel M; Drechsler J; Sakshaug JW Behav Res Methods; 2018 Oct; 50(5):1824-1840. PubMed ID: 28840562 [TBL] [Abstract][Full Text] [Related]
5. Multiple imputation of missing data in multilevel designs: A comparison of different strategies. Lüdtke O; Robitzsch A; Grund S Psychol Methods; 2017 Mar; 22(1):141-165. PubMed ID: 27607544 [TBL] [Abstract][Full Text] [Related]
6. Multiple Imputation in Multilevel Models. A Revision of the Current Software and Usage Examples for Researchers. García-Patos P; Olmos R Span J Psychol; 2020 Nov; 23():e46. PubMed ID: 33176896 [TBL] [Abstract][Full Text] [Related]
7. Multiple imputation for handling missing outcome data when estimating the relative risk. Sullivan TR; Lee KJ; Ryan P; Salter AB BMC Med Res Methodol; 2017 Sep; 17(1):134. PubMed ID: 28877666 [TBL] [Abstract][Full Text] [Related]
8. Multilevel multiple imputation: A review and evaluation of joint modeling and chained equations imputation. Enders CK; Mistler SA; Keller BT Psychol Methods; 2016 Jun; 21(2):222-40. PubMed ID: 26690775 [TBL] [Abstract][Full Text] [Related]
9. Modelling correlated data: Multilevel models and generalized estimating equations and their use with data from research in developmental disabilities. Vagenas D; Totsika V Res Dev Disabil; 2018 Oct; 81():1-11. PubMed ID: 29786528 [TBL] [Abstract][Full Text] [Related]
10. Double Decomposition of Level-1 Variables in Multilevel Models: An Analysis of the Flynn Effect in the NSLY Data. O'Keefe P; Rodgers JL Multivariate Behav Res; 2017; 52(5):630-647. PubMed ID: 28891688 [TBL] [Abstract][Full Text] [Related]
11. Modelling partially cross-classified multilevel data. Luo W; Cappaert KJ; Ning L Br J Math Stat Psychol; 2015 May; 68(2):342-62. PubMed ID: 25773173 [TBL] [Abstract][Full Text] [Related]
12. Imputation strategies for missing continuous outcomes in cluster randomized trials. Taljaard M; Donner A; Klar N Biom J; 2008 Jun; 50(3):329-45. PubMed ID: 18537126 [TBL] [Abstract][Full Text] [Related]
13. Evaluating fit indices in a multilevel latent growth curve model: A Monte Carlo study. Hsu HY; Lin JJH; Skidmore ST; Kim M Behav Res Methods; 2019 Feb; 51(1):172-194. PubMed ID: 30536150 [TBL] [Abstract][Full Text] [Related]
14. Multiple imputation for missing data: fully conditional specification versus multivariate normal imputation. Lee KJ; Carlin JB Am J Epidemiol; 2010 Mar; 171(5):624-32. PubMed ID: 20106935 [TBL] [Abstract][Full Text] [Related]
15. Analyzing individual growth with clustered longitudinal data: A comparison between model-based and design-based multilevel approaches. Hsu HY; Lin JJH; Skidmore ST Behav Res Methods; 2018 Apr; 50(2):786-803. PubMed ID: 28634725 [TBL] [Abstract][Full Text] [Related]
16. A Comparison of Population-Averaged and Cluster-Specific Approaches in the Context of Unequal Probabilities of Selection. Koziol NA; Bovaird JA; Suarez S Multivariate Behav Res; 2017; 52(3):325-349. PubMed ID: 28281792 [TBL] [Abstract][Full Text] [Related]
17. [Multilevel Analysis as a Tool to Analyze Research Questions in Rehabilitation Science]. Wirtz MA Rehabilitation (Stuttg); 2019 Aug; 58(4):274-281. PubMed ID: 29359283 [TBL] [Abstract][Full Text] [Related]
18. Multilevel analysis quantifies variation in the experimental effect while optimizing power and preventing false positives. Aarts E; Dolan CV; Verhage M; van der Sluis S BMC Neurosci; 2015 Dec; 16():94. PubMed ID: 26685825 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Multi-parameter Test Statistics for Multiple Imputation. Liu Y; Enders CK Multivariate Behav Res; 2017; 52(3):371-390. PubMed ID: 28328291 [TBL] [Abstract][Full Text] [Related]
20. A comparison of multiple imputation methods for incomplete longitudinal binary data. Yamaguchi Y; Misumi T; Maruo K J Biopharm Stat; 2018; 28(4):645-667. PubMed ID: 28886277 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]