These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 31074655)

  • 21. Estimating Standardized Effect Sizes for Two- and Three-Level Partially Nested Data.
    Lai MH; Kwok OM
    Multivariate Behav Res; 2016; 51(6):740-756. PubMed ID: 27802077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simple imputation methods versus direct likelihood analysis for missing item scores in multilevel educational data.
    Kadengye DT; Cools W; Ceulemans E; Van den Noortgate W
    Behav Res Methods; 2012 Jun; 44(2):516-31. PubMed ID: 22002637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A classifier ensemble approach for the missing feature problem.
    Nanni L; Lumini A; Brahnam S
    Artif Intell Med; 2012 May; 55(1):37-50. PubMed ID: 22188722
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three Issues in Multilevel Research.
    González-Romá V
    Span J Psychol; 2019 Mar; 22():E4. PubMed ID: 30819268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Comparisons of two statistical approaches in studying the longitudinal data: the multilevel model and the latent growth curve model].
    Li L; Zhou S; Zhang M; Zhang Y; Gao Y
    Zhonghua Liu Xing Bing Xue Za Zhi; 2014 Jun; 35(6):741-4. PubMed ID: 25174485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple imputation of missing covariate values in multilevel models with random slopes: a cautionary note.
    Grund S; Lüdtke O; Robitzsch A
    Behav Res Methods; 2016 Jun; 48(2):640-9. PubMed ID: 25939979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study.
    De Silva AP; Moreno-Betancur M; De Livera AM; Lee KJ; Simpson JA
    BMC Med Res Methodol; 2017 Jul; 17(1):114. PubMed ID: 28743256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advancing Multiple Imputation for Latent Profile Analysis.
    Waldman MR
    Multivariate Behav Res; 2019; 54(1):157-158. PubMed ID: 30888201
    [No Abstract]   [Full Text] [Related]  

  • 29. Missing values in longitudinal dietary data: a multiple imputation approach based on a fully conditional specification.
    Nevalainen J; Kenward MG; Virtanen SM
    Stat Med; 2009 Dec; 28(29):3657-69. PubMed ID: 19757484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Estimating Multilevel Models on Data Streams.
    Ippel L; Kaptein MC; Vermunt JK
    Psychometrika; 2019 Mar; 84(1):41-64. PubMed ID: 30671789
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple imputation of discrete and continuous data by fully conditional specification.
    van Buuren S
    Stat Methods Med Res; 2007 Jun; 16(3):219-42. PubMed ID: 17621469
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multilevel model for hierarchical, repeated, and overdispersed time-to-event outcomes and its estimation strategies.
    Efendi A; Molenberghs G
    J Biopharm Stat; 2013; 23(6):1420-34. PubMed ID: 24138440
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A bias-corrected estimator in multiple imputation for missing data.
    Tomita H; Fujisawa H; Henmi M
    Stat Med; 2018 Oct; 37(23):3373-3386. PubMed ID: 29845646
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data.
    Sullivan TR; Salter AB; Ryan P; Lee KJ
    Am J Epidemiol; 2015 Sep; 182(6):528-34. PubMed ID: 26337075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Comparison of Inverse-Wishart Prior Specifications for Covariance Matrices in Multilevel Autoregressive Models.
    Schuurman NK; Grasman RP; Hamaker EL
    Multivariate Behav Res; 2016; 51(2-3):185-206. PubMed ID: 27028576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple Group Analysis in Multilevel Structural Equation Model Across Level 1 Groups.
    Ryu E
    Multivariate Behav Res; 2015; 50(3):300-15. PubMed ID: 26610031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Testing Group Mean Differences of Latent Variables in Multilevel Data Using Multiple-Group Multilevel CFA and Multilevel MIMIC Modeling.
    Kim ES; Cao C
    Multivariate Behav Res; 2015; 50(4):436-56. PubMed ID: 26610156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of model- and design-based approaches to detect the treatment effect and covariate by treatment interactions in three-level models for multisite cluster-randomized trials.
    Aydin B; Algina J; L Leite W
    Behav Res Methods; 2019 Feb; 51(1):243-257. PubMed ID: 30066262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The HCUP SID Imputation Project: Improving Statistical Inferences for Health Disparities Research by Imputing Missing Race Data.
    Ma Y; Zhang W; Lyman S; Huang Y
    Health Serv Res; 2018 Jun; 53(3):1870-1889. PubMed ID: 28474359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Evaluation of Weighting Methods Based on Propensity Scores to Reduce Selection Bias in Multilevel Observational Studies.
    Leite WL; Jimenez F; Kaya Y; Stapleton LM; MacInnes JW; Sandbach R
    Multivariate Behav Res; 2015; 50(3):265-84. PubMed ID: 26610029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.