These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 31074704)
1. POU water filters effectively reduce lead in drinking water: a demonstration field study in flint, Michigan. Bosscher V; Lytle DA; Schock MR; Porter A; Del Toral M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(5):484-493. PubMed ID: 31074704 [TBL] [Abstract][Full Text] [Related]
2. Reviewing performance of NSF/ANSI 53 certified water filters for lead removal. Tang M; Lytle D; Achtemeier R; Tully J Water Res; 2023 Oct; 244():120425. PubMed ID: 37544118 [TBL] [Abstract][Full Text] [Related]
3. Influence of point-of-use filters and stagnation on water quality at a preschool and under laboratory conditions. Clark GG; Pan W; Giammar DE; Nguyen TH Water Res; 2022 Mar; 211():118034. PubMed ID: 35093709 [TBL] [Abstract][Full Text] [Related]
4. An evaluation of properly operated NSF/ANSI-53 Pb certified drinking water filters in Benton Harbor, MI. Tully J; Schock M; Shilling S; Bosscher V; Lytle D; Harmon S; Bennett-Stamper C J Water Health; 2024 Feb; 22(2):296-308. PubMed ID: 38421624 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness of point-of-use and pitcher filters at removing lead phosphate nanoparticles from drinking water. Doré E; Formal C; Muhlen C; Williams D; Harmon S; Pham M; Triantafyllidou S; Lytle DA Water Res; 2021 Aug; 201():117285. PubMed ID: 34107361 [TBL] [Abstract][Full Text] [Related]
6. Cost-benefit of point-of-use devices for lead reduction. Verhougstraete MP; Gerald JK; Gerba CP; Reynolds KA Environ Res; 2019 Apr; 171():260-265. PubMed ID: 30690272 [TBL] [Abstract][Full Text] [Related]
7. Effects of time and point-of-use devices on arsenic levels in Southeastern Michigan drinking water, USA. Slotnick MJ; Meliker JR; Nriagu JO Sci Total Environ; 2006 Oct; 369(1-3):42-50. PubMed ID: 16750243 [TBL] [Abstract][Full Text] [Related]
8. Performance of point-of-use devices to remove manganese from drinking water. Carrière A; Brouillon M; Sauvé S; Bouchard MF; Barbeau B J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(6):601-7. PubMed ID: 21526449 [TBL] [Abstract][Full Text] [Related]
9. Lead Particle Size Fractionation and Identification in Newark, New Jersey's Drinking Water. Lytle DA; Schock MR; Formal C; Bennett-Stamper C; Harmon S; Nadagouda MN; Williams D; DeSantis MK; Tully J; Pham M Environ Sci Technol; 2020 Nov; 54(21):13672-13679. PubMed ID: 33089978 [TBL] [Abstract][Full Text] [Related]
10. Faucet-mounted point-of-use drinking water filters to improve water quality in households served by private wells. Patton H; Krometis LA; Ling E; Cohen A; Sarver E Sci Total Environ; 2024 Jan; 906():167252. PubMed ID: 37742971 [TBL] [Abstract][Full Text] [Related]
11. Bacterial colonization in point-of-use filters and deaths in Flint, Michigan. Gomez HF; Borgialli DA; Sharman M; Scolpino AJ; Oleske JM; Bogden JD Int J Infect Dis; 2020 Feb; 91():267. PubMed ID: 31794859 [No Abstract] [Full Text] [Related]
12. Blood Lead Levels Among Children Aged <6 Years - Flint, Michigan, 2013-2016. Kennedy C; Yard E; Dignam T; Buchanan S; Condon S; Brown MJ; Raymond J; Rogers HS; Sarisky J; de Castro R; Arias I; Breysse P MMWR Morb Mortal Wkly Rep; 2016 Jul; 65(25):650-4. PubMed ID: 27359350 [TBL] [Abstract][Full Text] [Related]
13. Point-of-Use Filters for Lead Removal from Tap Water: Opportunities and Challenges. Pan W; Giammar DE Environ Sci Technol; 2022 Apr; 56(8):4718-4720. PubMed ID: 35344356 [No Abstract] [Full Text] [Related]
14. Monitoring the aftermath of Flint drinking water contamination crisis: Another case of sampling bias? Goovaerts P Sci Total Environ; 2017 Jul; 590-591():139-153. PubMed ID: 28259435 [TBL] [Abstract][Full Text] [Related]
15. Sequential drinking water sampling as a tool for evaluating lead in flint, Michigan. Lytle DA; Schock MR; Wait K; Cahalan K; Bosscher V; Porter A; Del Toral M Water Res; 2019 Jun; 157():40-54. PubMed ID: 30952007 [TBL] [Abstract][Full Text] [Related]
16. Removal of metals and assimilable organic carbon by activated carbon and reverse osmosis point-of-use water filtration systems. Yu HY; Gupta S; Zhou Z Chemosphere; 2024 Oct; 365():143251. PubMed ID: 39233301 [TBL] [Abstract][Full Text] [Related]
17. Sustainability assessment of long-term, widely used household Kanchan Arsenic Filters in Nepal. Ogata R; Dangol B; Sakamoto M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(5):517-527. PubMed ID: 31903841 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of a water arsenic filter in a participatory intervention to reduce arsenic exposure in American Indian communities: The Strong Heart Water Study. Zacher T; Endres K; Richards F; Robe LB; Powers M; Yracheta J; Harvey D; Best LG; Red Cloud R; Black Bear A; Ristau S; Aurand D; Skinner L; Cuny C; Gross M; Thomas E; Rule A; Schwab KJ; O'Leary M; Moulton LH; Navas-Acien A; George CM Sci Total Environ; 2023 Mar; 862():160217. PubMed ID: 36410482 [TBL] [Abstract][Full Text] [Related]
19. Quality of drinking water from the agricultural area treated with pitcher water filters. Królak E; Raczuk J; Sakowicz D; Biardzka E Rocz Panstw Zakl Hig; 2018; 69(1):87-93. PubMed ID: 29519119 [TBL] [Abstract][Full Text] [Related]
20. The development of point-of-use water filters as sampling devices in bioforensics: extent of microbial sorption and elution. Sedillo JL; Quintana A; Souza K; Oshima KH; Smith GB J Environ Monit; 2008 Jun; 10(6):718-23. PubMed ID: 18528538 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]