BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31074995)

  • 1. Generalizable Protein Biosensors Based on Synthetic Switch Modules.
    Guo Z; Johnston WA; Whitfield J; Walden P; Cui Z; Wijker E; Edwardraja S; Retamal Lantadilla I; Ely F; Vickers C; Ungerer JPJ; Alexandrov K
    J Am Chem Soc; 2019 May; 141(20):8128-8135. PubMed ID: 31074995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Allosteric Protein Electrochemical Switches with Biomolecular and Electronic Signals.
    Bollella P; Edwardraja S; Guo Z; Kirill Alexandrov ; Katz E
    J Phys Chem Lett; 2020 Jul; 11(14):5549-5554. PubMed ID: 32602718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Caged Activators of Artificial Allosteric Protein Biosensors.
    Edwardraja S; Guo Z; Whitfield J; Lantadilla IR; Johnston WA; Walden P; Vickers CE; Alexandrov K
    ACS Synth Biol; 2020 Jun; 9(6):1306-1314. PubMed ID: 32339455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Performance Parameters of Artificial Allosteric Protein Switches.
    Ergun Ayva C; Fiorito MM; Guo Z; Edwardraja S; Kaczmarski JA; Gagoski D; Walden P; Johnston WA; Jackson CJ; Nebl T; Alexandrov K
    J Mol Biol; 2022 Sep; 434(17):167678. PubMed ID: 35709893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An engineered calmodulin-based allosteric switch for Peptide biosensing.
    Meister GE; Joshi NS
    Chembiochem; 2013 Aug; 14(12):1460-7. PubMed ID: 23825049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of allosteric electrochemical protein switch using magnetic signals.
    Bollella P; Edwardraja S; Guo Z; Alexandrov K; Katz E
    Chem Commun (Camb); 2020 Aug; 56(64):9206-9209. PubMed ID: 32662462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PQQ glucose dehydrogenase with novel electron transfer ability.
    Okuda J; Sode K
    Biochem Biophys Res Commun; 2004 Feb; 314(3):793-7. PubMed ID: 14741705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells.
    Durand F; Stines-Chaumeil C; Flexer V; André I; Mano N
    Biochem Biophys Res Commun; 2010 Nov; 402(4):750-4. PubMed ID: 21036156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic protein switches: design principles and applications.
    Stein V; Alexandrov K
    Trends Biotechnol; 2015 Feb; 33(2):101-10. PubMed ID: 25535088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting a Periplasmic Binding Protein into a Synthetic Biosensing Switch through Domain Insertion.
    Ribeiro LF; Amarelle V; Ribeiro LFC; Guazzaroni ME
    Biomed Res Int; 2019; 2019():4798793. PubMed ID: 30719443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured Interface Loaded with Chimeric Enzymes for Fluorimetric Quantification of Cyclosporine A and FK506.
    Wells PK; Smutok O; Guo Z; Alexandrov K; Katz E
    Anal Chem; 2022 May; 94(20):7303-7310. PubMed ID: 35543230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermostable chimeric PQQ glucose dehydrogenase.
    Sode K; Watanabe K; Ito S; Matsumura K; Kikuchi T
    FEBS Lett; 1995 May; 364(3):325-7. PubMed ID: 7758590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure- and mechanism-guided design of single fluorescent protein-based biosensors.
    Nasu Y; Shen Y; Kramer L; Campbell RE
    Nat Chem Biol; 2021 May; 17(5):509-518. PubMed ID: 33558715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering PQQ-glucose dehydrogenase into an allosteric electrochemical Ca(2+) sensor.
    Guo Z; Johnston WA; Stein V; Kalimuthu P; Perez-Alcala S; Bernhardt PV; Alexandrov K
    Chem Commun (Camb); 2016 Jan; 52(3):485-8. PubMed ID: 26528736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circular Permutated PQQ-Glucose Dehydrogenase as an Ultrasensitive Electrochemical Biosensor.
    Guo Z; Smutok O; Johnston WA; Ayva CE; Walden P; McWhinney B; Ungerer JPJ; Melman A; Katz E; Alexandrov K
    Angew Chem Int Ed Engl; 2022 Feb; 61(6):e202109005. PubMed ID: 34633119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of the C-terminal 138 amino acids of the wheat FKBP73 abrogates calmodulin binding, dimerization and male fertility in transgenic rice.
    Kurek I; Dulberger R; Azem A; Tzvi BB; Sudhakar D; Christou P; Breiman A
    Plant Mol Biol; 2002 Mar; 48(4):369-81. PubMed ID: 11905964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered protein switches for exogenous control of gene expression.
    Spisak S; Ostermeier M
    Biochem Soc Trans; 2020 Oct; 48(5):2205-2212. PubMed ID: 33079167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Converting a protein into a switch for biosensing and functional regulation.
    Stratton MM; Loh SN
    Protein Sci; 2011 Jan; 20(1):19-29. PubMed ID: 21064163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified substrate specificity of pyrroloquinoline quinone glucose dehydrogenase by biased mutation assembling with optimized amino acid substitution.
    Hamamatsu N; Suzumura A; Nomiya Y; Sato M; Aita T; Nakajima M; Husimi Y; Shibanaka Y
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):607-17. PubMed ID: 16944137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of new binding specificity by simultaneous mutagenesis of calmodulin and a target peptide.
    Green DF; Dennis AT; Fam PS; Tidor B; Jasanoff A
    Biochemistry; 2006 Oct; 45(41):12547-59. PubMed ID: 17029410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.