These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 31075009)

  • 1. Enhanced Photoenergy Harvesting and Extreme Thomson Effect in Hydrodynamic Electronic Systems.
    Andersen TI; Smith TB; Principi A
    Phys Rev Lett; 2019 Apr; 122(16):166802. PubMed ID: 31075009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Violation of the Wiedemann-Franz Law in Hydrodynamic Electron Liquids.
    Principi A; Vignale G
    Phys Rev Lett; 2015 Jul; 115(5):056603. PubMed ID: 26274433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalously low electronic thermal conductivity in metallic vanadium dioxide.
    Lee S; Hippalgaonkar K; Yang F; Hong J; Ko C; Suh J; Liu K; Wang K; Urban JJ; Zhang X; Dames C; Hartnoll SA; Delaire O; Wu J
    Science; 2017 Jan; 355(6323):371-374. PubMed ID: 28126811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designer thermal switches: the effect of the contact material on instantaneous thermoelectric transport through a strongly interacting quantum dot.
    Goker A; Gedik E
    J Phys Condens Matter; 2013 Sep; 25(36):365301. PubMed ID: 23941808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Electrical Contact Resistance on Measurement of Thermal Conductivity and Wiedemann-Franz Law for Individual Metallic Nanowires.
    Wang J; Wu Z; Mao C; Zhao Y; Yang J; Chen Y
    Sci Rep; 2018 Mar; 8(1):4862. PubMed ID: 29559677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency.
    Tsaousidou M; Triberis GP
    J Phys Condens Matter; 2010 Sep; 22(35):355304. PubMed ID: 21403283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal resistivity and hydrodynamics of the degenerate electron fluid in antimony.
    Jaoui A; Fauqué B; Behnia K
    Nat Commun; 2021 Jan; 12(1):195. PubMed ID: 33420029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical and thermoelectric transport properties of two-dimensional fermionic systems with k-cubic spin-orbit coupling.
    Mawrie A; Verma S; Ghosh TK
    J Phys Condens Matter; 2017 Nov; 29(46):465303. PubMed ID: 29067916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High temperature thermoelectric properties of Mo3Sb(7-x)Te(x) (0.0≤x≤1.8).
    Candolfi C; Lenoir B; Chubilleau C; Dauscher A; Guilmeau E
    J Phys Condens Matter; 2010 Jan; 22(2):025801. PubMed ID: 21386262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-temperature thermal transport and thermopower of monolayer transition metal dichalcogenide semiconductors.
    Sengupta P; Tan Y; Klimeck G; Shi J
    J Phys Condens Matter; 2017 Oct; 29(40):405701. PubMed ID: 28862996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Violation of the Wiedemann-Franz law in a single-electron transistor.
    Kubala B; König J; Pekola J
    Phys Rev Lett; 2008 Feb; 100(6):066801. PubMed ID: 18352503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of the Wiedemann-Franz Law in Solid and Molten Tungsten above 2000 K through Thermal Conductivity Measurements via Steady-State Temperature Differential Radiometry.
    Milich M; Schonfeld HB; Boboridis K; Robba D; Vlahovic L; Konings RJM; Braun JL; Gaskins JT; Bhatt N; Giri A; Hopkins PE
    Phys Rev Lett; 2024 Apr; 132(14):146303. PubMed ID: 38640372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wiedemann-Franz Law for Molecular Hopping Transport.
    Craven GT; Nitzan A
    Nano Lett; 2020 Feb; 20(2):989-993. PubMed ID: 31951422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wiedemann-Franz Law for Massless Dirac Fermions with Implications for Graphene.
    Rycerz A
    Materials (Basel); 2021 May; 14(11):. PubMed ID: 34063902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large violation of the Wiedemann-Franz law in Luttinger liquids.
    Garg A; Rasch D; Shimshoni E; Rosch A
    Phys Rev Lett; 2009 Aug; 103(9):096402. PubMed ID: 19792814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide.
    Gooth J; Menges F; Kumar N; Süβ V; Shekhar C; Sun Y; Drechsler U; Zierold R; Felser C; Gotsmann B
    Nat Commun; 2018 Oct; 9(1):4093. PubMed ID: 30291248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of the Dirac fluid and the breakdown of the Wiedemann-Franz law in graphene.
    Crossno J; Shi JK; Wang K; Liu X; Harzheim A; Lucas A; Sachdev S; Kim P; Taniguchi T; Watanabe K; Ohki TA; Fong KC
    Science; 2016 Mar; 351(6277):1058-61. PubMed ID: 26912362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoting Dual Electronic and Ionic Transport in PEDOT by Embedding Carbon Nanotubes for Large Thermoelectric Responses.
    Choi K; Kim SL; Yi SI; Hsu JH; Yu C
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23891-23899. PubMed ID: 29947512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restricted Wiedemann-Franz law and vanishing thermoelectric power in one-dimensional conductors.
    Kuroda MA; Leburton JP
    Phys Rev Lett; 2008 Dec; 101(25):256805. PubMed ID: 19113740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Confinement Suppressing Electronic Heat Flow below the Wiedemann-Franz Law.
    Majidi D; Josefsson M; Kumar M; Leijnse M; Samuelson L; Courtois H; Winkelmann CB; Maisi VF
    Nano Lett; 2022 Jan; 22(2):630-635. PubMed ID: 35030004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.