These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31075257)

  • 1. Quantitative assessment of changes in cell growth, size and morphology during telomere-initiated cellular senescence in Saccharomyces cerevisiae.
    Ghanem NZ; Malla SRL; Araki N; Lewis LK
    Exp Cell Res; 2019 Aug; 381(1):18-28. PubMed ID: 31075257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible DNA damage checkpoint activation at the presenescent stage in telomerase-deficient cells of Saccharomyces cerevisiae.
    Miura A; Itakura E; Matsuura A
    Genes Cells; 2019 Aug; 24(8):546-558. PubMed ID: 31145520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Telomere cap components influence the rate of senescence in telomerase-deficient yeast cells.
    Enomoto S; Glowczewski L; Lew-Smith J; Berman JG
    Mol Cell Biol; 2004 Jan; 24(2):837-45. PubMed ID: 14701754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversibility of replicative senescence in Saccharomyces cerevisiae: effect of homologous recombination and cell cycle checkpoints.
    Becerra SC; Thambugala HT; Erickson AR; Lee CK; Lewis LK
    DNA Repair (Amst); 2012 Jan; 11(1):35-45. PubMed ID: 22071150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of telomere capping defects of Saccharomyces cerevisiae yku70 and yku80 mutants by telomerase.
    Holland CL; Sanderson BA; Titus JK; Weis MF; Riojas AM; Malczewskyj E; Wasko BM; Lewis LK
    G3 (Bethesda); 2021 Dec; 11(12):. PubMed ID: 34718547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MEC3, MEC1, and DDC2 are essential components of a telomere checkpoint pathway required for cell cycle arrest during senescence in Saccharomyces cerevisiae.
    Enomoto S; Glowczewski L; Berman J
    Mol Biol Cell; 2002 Aug; 13(8):2626-38. PubMed ID: 12181334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of telomeres and telomere-associated proteins in telomerase-negative Saccharomyces cerevisiae.
    Straatman KR; Louis EJ
    Chromosome Res; 2007; 15(8):1033-50. PubMed ID: 18075778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple Rad52-Mediated Homology-Directed Repair Mechanisms Are Required to Prevent Telomere Attrition-Induced Senescence in Saccharomyces cerevisiae.
    Claussin C; Chang M
    PLoS Genet; 2016 Jul; 12(7):e1006176. PubMed ID: 27428329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events.
    Chen Q; Ijpma A; Greider CW
    Mol Cell Biol; 2001 Mar; 21(5):1819-27. PubMed ID: 11238918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell size regulation during telomere-directed senescence in Saccharomyces cerevisiae.
    Matsui A; Matsuura A
    Biosci Biotechnol Biochem; 2010; 74(1):195-8. PubMed ID: 20057141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deficiency in homologous recombination is associated with changes in cell cycling and morphology in Saccharomyces cerevisiae.
    Holland CL; Weis MF; England CJ; Berry AM; Hall PD; Lewis LK
    Exp Cell Res; 2023 Sep; 430(1):113701. PubMed ID: 37393982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage.
    Pandey S; Hajikazemi M; Zacheja T; Schalbetter S; Neale MJ; Baxter J; Guryev V; Hofmann A; Heermann DW; Juranek SA; Paeschke K
    BMC Biol; 2021 Nov; 19(1):247. PubMed ID: 34801008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A subtelomeric region affects telomerase-negative replicative senescence in Saccharomyces cerevisiae.
    Jolivet P; Serhal K; Graf M; Eberhard S; Xu Z; Luke B; Teixeira MT
    Sci Rep; 2019 Feb; 9(1):1845. PubMed ID: 30755624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SGS1 is required for telomere elongation in the absence of telomerase.
    Huang P; Pryde FE; Lester D; Maddison RL; Borts RH; Hickson ID; Louis EJ
    Curr Biol; 2001 Jan; 11(2):125-9. PubMed ID: 11231130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-step model for senescence triggered by a single critically short telomere.
    Abdallah P; Luciano P; Runge KW; Lisby M; Géli V; Gilson E; Teixeira MT
    Nat Cell Biol; 2009 Aug; 11(8):988-93. PubMed ID: 19597486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telomerase-independent proliferation is influenced by cell type in Saccharomyces cerevisiae.
    Lowell JE; Roughton AI; Lundblad V; Pillus L
    Genetics; 2003 Jul; 164(3):909-21. PubMed ID: 12871903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deregulated telomere transcription causes replication-dependent telomere shortening and promotes cellular senescence.
    Maicher A; Kastner L; Dees M; Luke B
    Nucleic Acids Res; 2012 Aug; 40(14):6649-59. PubMed ID: 22553368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Telomere recombination accelerates cellular aging in Saccharomyces cerevisiae.
    Chen XF; Meng FL; Zhou JQ
    PLoS Genet; 2009 Jun; 5(6):e1000535. PubMed ID: 19557187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mating type influences chromosome loss and replicative senescence in telomerase-deficient budding yeast by Dnl4-dependent telomere fusion.
    Meyer DH; Bailis AM
    Mol Microbiol; 2008 Sep; 69(5):1246-54. PubMed ID: 18627461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition.
    Epum EA; Mohan MJ; Ruppe NP; Friedman KL
    PLoS Genet; 2020 Feb; 16(2):e1008608. PubMed ID: 32012161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.