BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31075357)

  • 21. Induction of cytochrome P450 isoforms by carcinogenic aromatic amines and carcinogenic susceptibility of rodent animals.
    Hashimoto Y; Degawa M
    Pharmacogenetics; 1995; 5 Spec No():S80-3. PubMed ID: 7581495
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of DNA adduct levels associated with exogenous and endogenous exposures in human pancreas in relation to metabolic genotype.
    Thompson PA; Seyedi F; Lang NP; MacLeod SL; Wogan GN; Anderson KE; Tang YM; Coles B; Kadlubar FF
    Mutat Res; 1999 Mar; 424(1-2):263-74. PubMed ID: 10064866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Higher frequency of aberrant crypt foci in rapid than slow acetylator inbred rats administered the colon carcinogen 3,2'-dimethyl-4-aminobiphenyl.
    Feng Y; Fretland AJ; Rustan TD; Jiang W; Becker WK; Hein DW
    Toxicol Appl Pharmacol; 1997 Nov; 147(1):56-62. PubMed ID: 9356307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of TP53 in repair of N-(deoxyguanosin-8-yl)-4-aminobiphenyl adducts in human transitional cell carcinoma of the urinary bladder.
    Torino JL; Burger MS; Reznikoff CA; Swaminathan S
    Carcinogenesis; 2001 Jan; 22(1):147-54. PubMed ID: 11159753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acetylator genotype (NAT2)-dependent formation of aberrant crypts in congenic Syrian hamsters administered 3,2'-dimethyl-4-aminobiphenyl.
    Feng Y; Wagner RJ; Fretland AJ; Becker WK; Cooley AM; Pretlow TP; Lee KJ; Hein DW
    Cancer Res; 1996 Feb; 56(3):527-31. PubMed ID: 8564966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines.
    Brockstedt U; Uzarowska A; Montpetit A; Pfau W; Labuda D
    Biochem Biophys Res Commun; 2004 Jan; 313(4):1004-8. PubMed ID: 14706642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic activation and deactivation of arylamine carcinogens by recombinant human NAT1 and polymorphic NAT2 acetyltransferases.
    Hein DW; Doll MA; Rustan TD; Gray K; Feng Y; Ferguson RJ; Grant DM
    Carcinogenesis; 1993 Aug; 14(8):1633-8. PubMed ID: 8353847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical studies of the mechanism of N-hydroxylation of primary aromatic amines by cytochrome P450 1A2: radicaloid or anionic?
    Ripa L; Mee C; Sjö P; Shamovsky I
    Chem Res Toxicol; 2014 Feb; 27(2):265-78. PubMed ID: 24410629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Interactions of Carcinogenic Aromatic Amines, 4-Aminobiphenyl and 4,4'-Diaminobiphenyl, with Lactoperoxidase - Insight to Breast Cancer.
    Sheikh IA; Beg MA; Yasir M
    Anticancer Res; 2017 Nov; 37(11):6245-6249. PubMed ID: 29061807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Environmental and chemical carcinogenesis.
    Wogan GN; Hecht SS; Felton JS; Conney AH; Loeb LA
    Semin Cancer Biol; 2004 Dec; 14(6):473-86. PubMed ID: 15489140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo and in vitro metabolism of arylamine procarcinogens in acetyltransferase-deficient mice.
    Sugamori KS; Brenneman D; Grant DM
    Drug Metab Dispos; 2006 Oct; 34(10):1697-702. PubMed ID: 16815960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 32P-postlabeling analysis of adducts generated by peroxidase-mediated binding of N-hydroxy-4-acetylaminobiphenyl to DNA.
    Hatcher JF; Swaminathan S
    Carcinogenesis; 1995 Sep; 16(9):2149-57. PubMed ID: 7554068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relative Contributions of CYP1A2 and CYP2E1 to the Bioactivation and Clearance of 4-Aminobiphenyl in Adult Mice.
    Wang S; Bott D; Tung A; Sugamori KS; Grant DM
    Drug Metab Dispos; 2015 Jul; 43(7):916-21. PubMed ID: 25922528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Black (air-cured) and blond (flue-cured) tobacco cancer risk. IV: Molecular dosimetry studies implicate aromatic amines as bladder carcinogens.
    Bartsch H; Malaveille C; Friesen M; Kadlubar FF; Vineis P
    Eur J Cancer; 1993; 29A(8):1199-207. PubMed ID: 8518034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 4-Aminobiphenyl induces liver DNA adducts in both neonatal and adult mice but induces liver mutations only in neonatal mice.
    Chen T; Mittelstaedt RA; Beland FA; Heflich RH; Moore MM; Parsons BL
    Int J Cancer; 2005 Nov; 117(2):182-7. PubMed ID: 15880493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-hydroxylation of 4-aminobiphenyl by CYP2E1 produces oxidative stress in a mouse model of chemically induced liver cancer.
    Wang S; Sugamori KS; Tung A; McPherson JP; Grant DM
    Toxicol Sci; 2015 Apr; 144(2):393-405. PubMed ID: 25601990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of arylamine N-acetyltransferase, sex, and age on 4-aminobiphenyl-induced in vivo mutant frequencies and spectra in mouse liver.
    Wang S; Sugamori KS; Brenneman D; Hsu I; Calce A; Grant DM
    Environ Mol Mutagen; 2012 Jun; 53(5):350-7. PubMed ID: 22508569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Capturing labile sulfenamide and sulfinamide serum albumin adducts of carcinogenic arylamines by chemical oxidation.
    Peng L; Turesky RJ
    Anal Chem; 2013 Jan; 85(2):1065-72. PubMed ID: 23240913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of N-(deoxyguanosin-8-yl)-4-azobiphenyl by (32)P-postlabeling analyses of DNA in human uroepithelial cells exposed to proximate metabolites of the environmental carcinogen 4-aminobiphenyl.
    Hatcher JF; Swaminathan S
    Environ Mol Mutagen; 2002; 39(4):314-22. PubMed ID: 12112383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comments on the history and importance of aromatic and heterocyclic amines in public health.
    Weisburger JH
    Mutat Res; 2002 Sep; 506-507():9-20. PubMed ID: 12351140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.