BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 31075591)

  • 1. Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine.
    Brain R; Goodwin G; Abi-Akar F; Lee B; Rodgers C; Flatt B; Lynn A; Kruger G; Perkins D
    Sci Total Environ; 2019 Aug; 678():239-252. PubMed ID: 31075591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the effects of herbicide drift on nontarget terrestrial plants: A case study with mesotrione.
    Brain RA; Perine J; Cooke C; Ellis CB; Harrington P; Lane A; O'Sullivan C; Ledson M
    Environ Toxicol Chem; 2017 Sep; 36(9):2465-2475. PubMed ID: 28262983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of field-scale spray drift deposition and non-target plant biological sensitivity: a corn herbicide (mesotrione/s-metolochlor) case study.
    Perkins DB; Abi-Akar F; Goodwin G; Brain RA
    Pest Manag Sci; 2022 Jul; 78(7):3193-3206. PubMed ID: 35488378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study.
    Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB
    Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nozzle selection on deposition of thiamethoxam in Actara® spray drift and implications for off-field risk assessment.
    Perine J; Anderson JC; Kruger GR; Abi-Akar F; Overmyer J
    Sci Total Environ; 2021 Jun; 772():144808. PubMed ID: 33770886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece.
    Kasiotis KM; Glass CR; Tsakirakis AN; Machera K
    Sci Total Environ; 2014 May; 479-480():132-7. PubMed ID: 24561292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spray drift as affected by meteorological conditions.
    Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H
    Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A field spray drift study to determine the downwind effects of isoxaflutole herbicide to nontarget plants.
    Moore DRJ; Priest CD; Brayden BH; Hanzas JP; Arpino MR; Richardson L; Stryker J; Banman C; Rodney SI; Chapple A; Hall T; Isemer R; Ortego L; Rodea-Palomares I; Tang J; Wang M; Xu T; Yang Y
    Integr Environ Assess Manag; 2022 May; 18(3):757-769. PubMed ID: 34383375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Off-target loss in ornamental nurseries with different spray techniques.
    Zhu H; Derksen RC; Krause CR; Zondag RH
    Commun Agric Appl Biol Sci; 2009; 74(1):25-36. PubMed ID: 20218508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of hedges on spray deposition and on the biological impact of pesticide spray drift.
    Davis BN; Brown MJ; Frost AJ; Yates TJ; Plant RA
    Ecotoxicol Environ Saf; 1994 Apr; 27(3):281-93. PubMed ID: 7519547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spray Drift from a Conventional Axial Fan Airblast Sprayer in a Modern Orchard Work Environment.
    Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG
    Ann Work Expo Health; 2018 Nov; 62(9):1134-1146. PubMed ID: 30346469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data.
    Allwine KJ; Thistle HW; Teske ME; Anhold J
    Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and indirect drift assessment means. Part 2: wind tunnel experiments.
    Nuyttens D; De Schampheleire M; Baetens K; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):757-61. PubMed ID: 19226825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Wind Speed and Direction and Key Meteorological Parameters on Potential Pesticide Drift Mass Loadings from Sequential Aerial Applications.
    Desmarteau DA; Ritter AM; Hendley P; Guevara MW
    Integr Environ Assess Manag; 2020 Mar; 16(2):197-210. PubMed ID: 31589364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Herbicide spray drift from ground and aerial applications: Implications for potential pollinator foraging sources.
    Butts TR; Fritz BK; Kouame KB; Norsworthy JK; Barber LT; Ross WJ; Lorenz GM; Thrash BC; Bateman NR; Adamczyk JJ
    Sci Rep; 2022 Oct; 12(1):18017. PubMed ID: 36289439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers.
    Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E
    Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spray drift deposition comparison of fluorimetry and analytical confirmation techniques.
    Szarka AZ; Kruger GR; Golus J; Rodgers C; Perkins D; Brain RA
    Pest Manag Sci; 2021 Sep; 77(9):4192-4199. PubMed ID: 33942978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct and indirect drift assessment means. Part 3: field drift experiments.
    Nuyttens D; De Schampheleire M; Baetens K; Dekeyser D; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):763-7. PubMed ID: 19226826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.
    Hewitt AJ; Solomon KR; Marshall EJ
    J Toxicol Environ Health A; 2009; 72(15-16):921-9. PubMed ID: 19672760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting aerial spray drift in the Brazilian Cerrado.
    Baio FHR; Antuniassi UR; Castilho BR; Teodoro PE; Silva EED
    PLoS One; 2019; 14(2):e0212289. PubMed ID: 30779797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.