These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 31075591)
1. Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine. Brain R; Goodwin G; Abi-Akar F; Lee B; Rodgers C; Flatt B; Lynn A; Kruger G; Perkins D Sci Total Environ; 2019 Aug; 678():239-252. PubMed ID: 31075591 [TBL] [Abstract][Full Text] [Related]
2. Evaluating the effects of herbicide drift on nontarget terrestrial plants: A case study with mesotrione. Brain RA; Perine J; Cooke C; Ellis CB; Harrington P; Lane A; O'Sullivan C; Ledson M Environ Toxicol Chem; 2017 Sep; 36(9):2465-2475. PubMed ID: 28262983 [TBL] [Abstract][Full Text] [Related]
3. Characterization of field-scale spray drift deposition and non-target plant biological sensitivity: a corn herbicide (mesotrione/s-metolochlor) case study. Perkins DB; Abi-Akar F; Goodwin G; Brain RA Pest Manag Sci; 2022 Jul; 78(7):3193-3206. PubMed ID: 35488378 [TBL] [Abstract][Full Text] [Related]
4. Validation of the AGDISP model for predicting airborne atrazine spray drift: A South African ground application case study. Nsibande SA; Dabrowski JM; van der Walt E; Venter A; Forbes PB Chemosphere; 2015 Nov; 138():454-61. PubMed ID: 26171732 [TBL] [Abstract][Full Text] [Related]
5. Effect of nozzle selection on deposition of thiamethoxam in Actara® spray drift and implications for off-field risk assessment. Perine J; Anderson JC; Kruger GR; Abi-Akar F; Overmyer J Sci Total Environ; 2021 Jun; 772():144808. PubMed ID: 33770886 [TBL] [Abstract][Full Text] [Related]
6. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece. Kasiotis KM; Glass CR; Tsakirakis AN; Machera K Sci Total Environ; 2014 May; 479-480():132-7. PubMed ID: 24561292 [TBL] [Abstract][Full Text] [Related]
7. Spray drift as affected by meteorological conditions. Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942 [TBL] [Abstract][Full Text] [Related]
8. A field spray drift study to determine the downwind effects of isoxaflutole herbicide to nontarget plants. Moore DRJ; Priest CD; Brayden BH; Hanzas JP; Arpino MR; Richardson L; Stryker J; Banman C; Rodney SI; Chapple A; Hall T; Isemer R; Ortego L; Rodea-Palomares I; Tang J; Wang M; Xu T; Yang Y Integr Environ Assess Manag; 2022 May; 18(3):757-769. PubMed ID: 34383375 [TBL] [Abstract][Full Text] [Related]
9. Off-target loss in ornamental nurseries with different spray techniques. Zhu H; Derksen RC; Krause CR; Zondag RH Commun Agric Appl Biol Sci; 2009; 74(1):25-36. PubMed ID: 20218508 [TBL] [Abstract][Full Text] [Related]
10. The effects of hedges on spray deposition and on the biological impact of pesticide spray drift. Davis BN; Brown MJ; Frost AJ; Yates TJ; Plant RA Ecotoxicol Environ Saf; 1994 Apr; 27(3):281-93. PubMed ID: 7519547 [TBL] [Abstract][Full Text] [Related]
11. Spray Drift from a Conventional Axial Fan Airblast Sprayer in a Modern Orchard Work Environment. Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG Ann Work Expo Health; 2018 Nov; 62(9):1134-1146. PubMed ID: 30346469 [TBL] [Abstract][Full Text] [Related]
12. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data. Allwine KJ; Thistle HW; Teske ME; Anhold J Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131 [TBL] [Abstract][Full Text] [Related]
13. Direct and indirect drift assessment means. Part 2: wind tunnel experiments. Nuyttens D; De Schampheleire M; Baetens K; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):757-61. PubMed ID: 19226825 [TBL] [Abstract][Full Text] [Related]
14. Impact of Wind Speed and Direction and Key Meteorological Parameters on Potential Pesticide Drift Mass Loadings from Sequential Aerial Applications. Desmarteau DA; Ritter AM; Hendley P; Guevara MW Integr Environ Assess Manag; 2020 Mar; 16(2):197-210. PubMed ID: 31589364 [TBL] [Abstract][Full Text] [Related]
15. Herbicide spray drift from ground and aerial applications: Implications for potential pollinator foraging sources. Butts TR; Fritz BK; Kouame KB; Norsworthy JK; Barber LT; Ross WJ; Lorenz GM; Thrash BC; Bateman NR; Adamczyk JJ Sci Rep; 2022 Oct; 12(1):18017. PubMed ID: 36289439 [TBL] [Abstract][Full Text] [Related]
16. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers. Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400 [TBL] [Abstract][Full Text] [Related]
17. Spray drift deposition comparison of fluorimetry and analytical confirmation techniques. Szarka AZ; Kruger GR; Golus J; Rodgers C; Perkins D; Brain RA Pest Manag Sci; 2021 Sep; 77(9):4192-4199. PubMed ID: 33942978 [TBL] [Abstract][Full Text] [Related]
18. Direct and indirect drift assessment means. Part 3: field drift experiments. Nuyttens D; De Schampheleire M; Baetens K; Dekeyser D; Sonck B Commun Agric Appl Biol Sci; 2008; 73(4):763-7. PubMed ID: 19226826 [TBL] [Abstract][Full Text] [Related]
19. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia. Hewitt AJ; Solomon KR; Marshall EJ J Toxicol Environ Health A; 2009; 72(15-16):921-9. PubMed ID: 19672760 [TBL] [Abstract][Full Text] [Related]