BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 31075741)

  • 1. New perspective on the metabolism of AD-1 in vivo: Characterization of a series of dammarane-type derivatives with novel metabolic sites and anticancer mechanisms of active oleanane-type metabolites.
    Ding M; Wang X; Zhang Y; Yuan W; Zhang H; Xu L; Wang Z; Lu J; Li W; Zhao Y
    Bioorg Chem; 2019 Jul; 88():102961. PubMed ID: 31075741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticancer 20(R)-dammarane-3β,12β,20,25-tetrol-loaded polymeric micelles: Preparation, quantification and pharmacokinetics.
    Yu J; Li Z; Wang W; Zhang Y; Li D; Liu Y; Shen S; Zhang R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Jun; 1022():13-20. PubMed ID: 27070116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biotransformation of Oleanane and Ursane Triterpenic Acids.
    Luchnikova NA; Grishko VV; Ivshina IB
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of novel ginsenoside metabolites targeting HSP70 as anti-prostate cancer drugs.
    Xu L; Xiao S; Chai Z; Li T; Joon Lee J; Su G; Zhao Y
    Bioorg Chem; 2024 Mar; 144():107131. PubMed ID: 38271824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in the Semisynthesis, Modifications and Biological Activities of Ocotillol-Type Triterpenoids.
    Cao Y; Wang K; Xu S; Kong L; Bi Y; Li X
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33260848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant Resources, (13)C-NMR Spectral Characteristic and Pharmacological Activities of Dammarane-Type Triterpenoids.
    Ruan J; Zheng C; Qu L; Liu Y; Han L; Yu H; Zhang Y; Wang T
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27529202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ginsenoside Rg5 as an anticancer drug: a comprehensive review on mechanisms, structure-activity relationship, and prospects for clinical advancement.
    Elsaman T; Muddathir AM; Mohieldin EAM; Batubara I; Rahminiwati M; Yamauchi K; Mohamed MA; Asoka SF; Büsselberg D; Habtemariam S; Sharifi-Rad J
    Pharmacol Rep; 2024 Apr; 76(2):287-306. PubMed ID: 38526651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid-conjugated Smac analogues.
    Micewicz ED; Ratikan JA; Waring AJ; Whitelegge JP; McBride WH; Ruchala P
    Bioorg Med Chem Lett; 2015 Oct; 25(20):4419-27. PubMed ID: 26384289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chromosome-level reference genome assembly for
    Jiang Z; Tu L; Yang W; Zhang Y; Hu T; Ma B; Lu Y; Cui X; Gao J; Wu X; Tong Y; Zhou J; Song Y; Liu Y; Liu N; Huang L; Gao W
    Plant Commun; 2021 Jan; 2(1):100113. PubMed ID: 33511345
    [No Abstract]   [Full Text] [Related]  

  • 10. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo.
    Murphy MP; Bayir H; Belousov V; Chang CJ; Davies KJA; Davies MJ; Dick TP; Finkel T; Forman HJ; Janssen-Heininger Y; Gems D; Kagan VE; Kalyanaraman B; Larsson NG; Milne GL; Nyström T; Poulsen HE; Radi R; Van Remmen H; Schumacker PT; Thornalley PJ; Toyokuni S; Winterbourn CC; Yin H; Halliwell B
    Nat Metab; 2022 Jun; 4(6):651-662. PubMed ID: 35760871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ginsenosides Rb1 Attenuates Chronic Social Defeat Stress-Induced Depressive Behavior
    Jiang N; Zhang Y; Yao C; Huang H; Wang Q; Huang S; He Q; Liu X
    Front Nutr; 2022; 9():868833. PubMed ID: 35634375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical constituents of Panax ginseng and Panax notoginseng explain why they differ in therapeutic efficacy.
    Liu H; Lu X; Hu Y; Fan X
    Pharmacol Res; 2020 Nov; 161():105263. PubMed ID: 33127555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease.
    Dayalan Naidu S; Dinkova-Kostova AT
    Open Biol; 2020 Jun; 10(6):200105. PubMed ID: 32574549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nrf2 activation through the inhibition of Keap1-Nrf2 protein-protein interaction.
    Lee S; Hu L
    Med Chem Res; 2020 May; 29(5):846-867. PubMed ID: 32390710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astragaloside IV targets PRDX6, inhibits the activation of RAC subunit in NADPH oxidase 2 for oxidative damage.
    Cheng C; Liu K; Shen F; Zhang J; Xie Y; Li S; Hou Y; Bai G
    Phytomedicine; 2023 Jun; 114():154795. PubMed ID: 37030053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, synthesis and evaluation of novel small molecules acting as Keap1-Nrf2 protein-protein interaction inhibitors.
    Sun Y; Zheng L; Yang B; Ge S; Li Q; Zhang M; Shen S; Ying Y
    J Enzyme Inhib Med Chem; 2022 Dec; 37(1):2575-2588. PubMed ID: 36128875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, synthesis and biological activity evaluation of a series of bardoxolone methyl prodrugs.
    Liu L; Pan X; Xie F; Xu X; Xiao D; Xiao J; Zhou X
    Bioorg Chem; 2022 Jul; 124():105831. PubMed ID: 35512420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139-5p/FoxO1/Keap1/Nrf2 axis.
    Yao Y; Hu S; Zhang C; Zhou Q; Wang H; Yang Y; Liu C; Ding H
    Int Immunopharmacol; 2022 Apr; 105():108582. PubMed ID: 35124564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dihydrotanshinone I inhibits ovarian tumor growth by activating oxidative stress through Keap1-mediated Nrf2 ubiquitination degradation.
    Sun C; Han B; Zhai Y; Zhao H; Li X; Qian J; Hao X; Liu Q; Shen J; Kai G
    Free Radic Biol Med; 2022 Feb; 180():220-235. PubMed ID: 35074488
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.