BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 31076479)

  • 21. Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair.
    Ye J; Zha J; Shi Y; Li Y; Yuan D; Chen Q; Lin F; Fang Z; Yu Y; Dai Y; Xu B
    Clin Epigenetics; 2019 Oct; 11(1):137. PubMed ID: 31590682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting the MTF2-MDM2 Axis Sensitizes Refractory Acute Myeloid Leukemia to Chemotherapy.
    Maganti HB; Jrade H; Cafariello C; Manias Rothberg JL; Porter CJ; Yockell-Lelièvre J; Battaion HL; Khan ST; Howard JP; Li Y; Grzybowski AT; Sabri E; Ruthenburg AJ; Dilworth FJ; Perkins TJ; Sabloff M; Ito CY; Stanford WL
    Cancer Discov; 2018 Nov; 8(11):1376-1389. PubMed ID: 30115703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational cooperativity linked to combinatorial epigenetic gain of function in acute myeloid leukemia.
    Shih AH; Jiang Y; Meydan C; Shank K; Pandey S; Barreyro L; Antony-Debre I; Viale A; Socci N; Sun Y; Robertson A; Cavatore M; de Stanchina E; Hricik T; Rapaport F; Woods B; Wei C; Hatlen M; Baljevic M; Nimer SD; Tallman M; Paietta E; Cimmino L; Aifantis I; Steidl U; Mason C; Melnick A; Levine RL
    Cancer Cell; 2015 Apr; 27(4):502-15. PubMed ID: 25873173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia.
    Sanjiv K; Calderón-Montaño JM; Pham TM; Erkers T; Tsuber V; Almlöf I; Höglund A; Heshmati Y; Seashore-Ludlow B; Nagesh Danda A; Gad H; Wiita E; Göktürk C; Rasti A; Friedrich S; Centio A; Estruch M; Våtsveen TK; Struyf N; Visnes T; Scobie M; Koolmeister T; Henriksson M; Wallner O; Sandvall T; Lehmann S; Theilgaard-Mönch K; Garnett MJ; Östling P; Walfridsson J; Helleday T; Warpman Berglund U
    Cancer Res; 2021 Nov; 81(22):5733-5744. PubMed ID: 34593524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PU.1-Dependent Enhancer Inhibition Separates Tet2-Deficient Hematopoiesis from Malignant Transformation.
    Aivalioti MM; Bartholdy BA; Pradhan K; Bhagat TD; Zintiridou A; Jeong JJ; Thiruthuvanathan VJ; Pujato M; Paranjpe A; Zhang C; Levine RL; Viny AD; Wickrema A; Verma A; Will B
    Blood Cancer Discov; 2022 Sep; 3(5):444-467. PubMed ID: 35820129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TET3 promotes AML growth and epigenetically regulates glucose metabolism and leukemic stem cell associated pathways.
    Pulikkottil AJ; Bamezai S; Ammer T; Mohr F; Feder K; Vegi NM; Mandal T; Kohlhofer U; Quintanilla-Martinez L; Sinha A; Buske C; Rawat VPS
    Leukemia; 2022 Feb; 36(2):416-425. PubMed ID: 34462525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeting LSD1 for acute myeloid leukemia (AML) treatment.
    Zhang S; Liu M; Yao Y; Yu B; Liu H
    Pharmacol Res; 2021 Feb; 164():105335. PubMed ID: 33285227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. LSD1 inhibition exerts its antileukemic effect by recommissioning PU.1- and C/EBPα-dependent enhancers in AML.
    Cusan M; Cai SF; Mohammad HP; Krivtsov A; Chramiec A; Loizou E; Witkin MD; Smitheman KN; Tenen DG; Ye M; Will B; Steidl U; Kruger RG; Levine RL; Rienhoff HY; Koche RP; Armstrong SA
    Blood; 2018 Apr; 131(15):1730-1742. PubMed ID: 29453291
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting miR-126 in inv(16) acute myeloid leukemia inhibits leukemia development and leukemia stem cell maintenance.
    Zhang L; Nguyen LXT; Chen YC; Wu D; Cook GJ; Hoang DH; Brewer CJ; He X; Dong H; Li S; Li M; Zhao D; Qi J; Hua WK; Cai Q; Carnahan E; Chen W; Wu X; Swiderski P; Rockne RC; Kortylewski M; Li L; Zhang B; Marcucci G; Kuo YH
    Nat Commun; 2021 Oct; 12(1):6154. PubMed ID: 34686664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1.
    Loizou E; Banito A; Livshits G; Ho YJ; Koche RP; Sánchez-Rivera FJ; Mayle A; Chen CC; Kinalis S; Bagger FO; Kastenhuber ER; Durham BH; Lowe SW
    Cancer Discov; 2019 Jul; 9(7):962-979. PubMed ID: 31068365
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells.
    Rasmussen KD; Berest I; Keβler S; Nishimura K; Simón-Carrasco L; Vassiliou GS; Pedersen MT; Christensen J; Zaugg JB; Helin K
    Genome Res; 2019 Apr; 29(4):564-575. PubMed ID: 30796038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Association of expression of epigenetic molecular factors with DNA methylation and sensitivity to chemotherapeutic agents in cancer cell lines.
    Vural S; Palmisano A; Reinhold WC; Pommier Y; Teicher BA; Krushkal J
    Clin Epigenetics; 2021 Mar; 13(1):49. PubMed ID: 33676569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic lethality of combined AT-101 with idarubicin in acute myeloid leukemia via blockade of DNA repair and activation of intrinsic apoptotic pathway.
    Yang Q; Chen K; Zhang L; Feng L; Fu G; Jiang S; Bi S; Lin C; Zhou Y; Zhao H; Chen XL; Fu G; Xu B
    Cancer Lett; 2019 Oct; 461():31-43. PubMed ID: 31301319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Src and c-Kit kinase inhibitor dasatinib enhances p53-mediated targeting of human acute myeloid leukemia stem cells by chemotherapeutic agents.
    Dos Santos C; McDonald T; Ho YW; Liu H; Lin A; Forman SJ; Kuo YH; Bhatia R
    Blood; 2013 Sep; 122(11):1900-13. PubMed ID: 23896410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibitors of LSD1 as a potential therapy for acute myeloid leukemia.
    Przespolewski A; Wang ES
    Expert Opin Investig Drugs; 2016 Jul; 25(7):771-80. PubMed ID: 27077938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group.
    Gaidzik VI; Paschka P; Späth D; Habdank M; Köhne CH; Germing U; von Lilienfeld-Toal M; Held G; Horst HA; Haase D; Bentz M; Götze K; Döhner H; Schlenk RF; Bullinger L; Döhner K
    J Clin Oncol; 2012 Apr; 30(12):1350-7. PubMed ID: 22430270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism.
    Polak A; Bialopiotrowicz E; Krzymieniewska B; Wozniak J; Stojak M; Cybulska M; Kaniuga E; Mikula M; Jablonska E; Gorniak P; Noyszewska-Kania M; Szydlowski M; Piechna K; Piwocka K; Bugajski L; Lech-Maranda E; Barankiewicz J; Kolkowska-Lesniak A; Patkowska E; Glodkowska-Mrowka E; Baran N; Juszczynski P
    Cell Death Dis; 2020 Nov; 11(11):956. PubMed ID: 33159047
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inactivation of Receptor Tyrosine Kinases Reverts Aberrant DNA Methylation in Acute Myeloid Leukemia.
    Shen N; Yan F; Pang J; Zhao N; Gangat N; Wu L; Bode AM; Al-Kali A; Litzow MR; Liu S
    Clin Cancer Res; 2017 Oct; 23(20):6254-6266. PubMed ID: 28720666
    [No Abstract]   [Full Text] [Related]  

  • 39. Targeting DNA hypermethylation: Computational modeling of DNA demethylation treatment of acute myeloid leukemia.
    Przybilla J; Hopp L; Lübbert M; Loeffler M; Galle J
    Epigenetics; 2017; 12(10):886-896. PubMed ID: 28758855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epigenetic silencing of TET2 and TET3 induces an EMT-like process in melanoma.
    Gong F; Guo Y; Niu Y; Jin J; Zhang X; Shi X; Zhang L; Li R; Chen L; Ma RZ
    Oncotarget; 2017 Jan; 8(1):315-328. PubMed ID: 27852070
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.