These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
357 related articles for article (PubMed ID: 31076890)
1. Energy system contribution during competitive cross-country skiing. Losnegard T Eur J Appl Physiol; 2019 Aug; 119(8):1675-1690. PubMed ID: 31076890 [TBL] [Abstract][Full Text] [Related]
2. Factors that Influence the Performance of Elite Sprint Cross-Country Skiers. Hébert-Losier K; Zinner C; Platt S; Stöggl T; Holmberg HC Sports Med; 2017 Feb; 47(2):319-342. PubMed ID: 27334280 [TBL] [Abstract][Full Text] [Related]
3. A reappraisal of success factors for Olympic cross-country skiing. Sandbakk Ø; Holmberg HC Int J Sports Physiol Perform; 2014 Jan; 9(1):117-21. PubMed ID: 24088346 [TBL] [Abstract][Full Text] [Related]
4. Physiological Capacity and Training Routines of Elite Cross-Country Skiers: Approaching the Upper Limits of Human Endurance. Sandbakk Ø; Holmberg HC Int J Sports Physiol Perform; 2017 Sep; 12(8):1003-1011. PubMed ID: 28095083 [TBL] [Abstract][Full Text] [Related]
5. Physiological Demands of Competitive Sprint and Distance Performance in Elite Female Cross-Country Skiing. Carlsson M; Carlsson T; Wedholm L; Nilsson M; Malm C; Tonkonogi M J Strength Cond Res; 2016 Aug; 30(8):2138-44. PubMed ID: 26808846 [TBL] [Abstract][Full Text] [Related]
6. Oxygen Demand, Uptake, and Deficits in Elite Cross-Country Skiers during a 15-km Race. Gløersen Ø; Gilgien M; Dysthe DK; Malthe-Sørenssen A; Losnegard T Med Sci Sports Exerc; 2020 Apr; 52(4):983-992. PubMed ID: 31738350 [TBL] [Abstract][Full Text] [Related]
7. Determinants of a simulated cross-country skiing sprint competition using V2 skating technique on roller skis. Mikkola J; Laaksonen M; Holmberg HC; Vesterinen V; Nummela A J Strength Cond Res; 2010 Apr; 24(4):920-8. PubMed ID: 20168254 [TBL] [Abstract][Full Text] [Related]
8. Contribution of Upper-Body Strength, Body Composition, and Maximal Oxygen Uptake to Predict Double Poling Power and Overall Performance in Female Cross-Country Skiers. Østerås S; Welde B; Danielsen J; van den Tillaar R; Ettema G; Sandbakk Ø J Strength Cond Res; 2016 Sep; 30(9):2557-64. PubMed ID: 26817743 [TBL] [Abstract][Full Text] [Related]
9. Anaerobic capacity as a determinant of performance in sprint skiing. Losnegard T; Myklebust H; Hallén J Med Sci Sports Exerc; 2012 Apr; 44(4):673-81. PubMed ID: 21952633 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Exclusive Double Poling to Classic Techniques of Cross-country Skiing. Stöggl T; Ohtonen O; Takeda M; Miyamoto N; Snyder C; Lemmettylä T; Linnamo V; Lindinger SJ Med Sci Sports Exerc; 2019 Apr; 51(4):760-772. PubMed ID: 30418963 [TBL] [Abstract][Full Text] [Related]
11. Maximizing recovery time between knock-out races improves sprint cross-country skiing performance. McGawley K; Van Waerbeke C; Westberg KJ; Andersson EP J Sport Health Sci; 2022 Jan; 11(1):21-29. PubMed ID: 34936939 [TBL] [Abstract][Full Text] [Related]
12. Metabolic Responses and Pacing Strategies during Successive Sprint Skiing Time Trials. Andersson E; Holmberg HC; Ørtenblad N; Björklund G Med Sci Sports Exerc; 2016 Dec; 48(12):2544-2554. PubMed ID: 27414686 [TBL] [Abstract][Full Text] [Related]
13. The Effect of Maximal Speed Ability, Pacing Strategy, and Technique on the Finish Sprint of a Sprint Cross-Country Skiing Competition. Haugnes P; Torvik PØ; Ettema G; Kocbach J; Sandbakk Ø Int J Sports Physiol Perform; 2019 Jul; 14(6):788–795. PubMed ID: 30569776 [No Abstract] [Full Text] [Related]
14. The Evolution of Champion Cross-Country-Skier Training: From Lumberjacks to Professional Athletes. Sandbakk Ø Int J Sports Physiol Perform; 2017 Feb; 12(2):254-259. PubMed ID: 28095069 [TBL] [Abstract][Full Text] [Related]
15. The physiology of world-class sprint skiers. Sandbakk Ø; Holmberg HC; Leirdal S; Ettema G Scand J Med Sci Sports; 2011 Dec; 21(6):e9-16. PubMed ID: 20500558 [TBL] [Abstract][Full Text] [Related]
16. Differences in pacing pattern and sub-technique selection between young and adult competitive cross-country skiers. Sollie O; Gløersen Ø; Gilgien M; Losnegard T Scand J Med Sci Sports; 2021 Mar; 31(3):553-563. PubMed ID: 33231327 [TBL] [Abstract][Full Text] [Related]
17. Gender differences in the physiological responses and kinematic behaviour of elite sprint cross-country skiers. Sandbakk O; Ettema G; Leirdal S; Holmberg HC Eur J Appl Physiol; 2012 Mar; 112(3):1087-94. PubMed ID: 21748369 [TBL] [Abstract][Full Text] [Related]
18. Energy system contributions and determinants of performance in sprint cross-country skiing. Andersson E; Björklund G; Holmberg HC; Ørtenblad N Scand J Med Sci Sports; 2017 Apr; 27(4):385-398. PubMed ID: 26923666 [TBL] [Abstract][Full Text] [Related]
19. Energy cost of free technique and classical cross-country skiing at racing speeds. Welde B; Evertsen F; Von Heimburg E; Ingulf Medbø J Med Sci Sports Exerc; 2003 May; 35(5):818-25. PubMed ID: 12750592 [TBL] [Abstract][Full Text] [Related]
20. Skiing economy and efficiency in recreational and elite cross-country skiers. Ainegren M; Carlsson P; Tinnsten M; Laaksonen MS J Strength Cond Res; 2013 May; 27(5):1239-52. PubMed ID: 22344058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]