These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31076969)

  • 1. Validation of protein backbone structures calculated from NMR angular restraints using Rosetta.
    Lapin J; Nevzorov AA
    J Biomol NMR; 2019 May; 73(5):229-244. PubMed ID: 31076969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR "Crystallography" for Uniformly (
    Awosanya EO; Lapin J; Nevzorov AA
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3554-3557. PubMed ID: 31887238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exact solutions for internuclear vectors and backbone dihedral angles from NH residual dipolar couplings in two media, and their application in a systematic search algorithm for determining protein backbone structure.
    Wang L; Donald BR
    J Biomol NMR; 2004 Jul; 29(3):223-42. PubMed ID: 15213422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure determination in "shiftless" solid state NMR of oriented protein samples.
    Yin Y; Nevzorov AA
    J Magn Reson; 2011 Sep; 212(1):64-73. PubMed ID: 21741286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N-15N and carbonyl 13C-13C dipolar recoupling data.
    Hu KN; Qiang W; Bermejo GA; Schwieters CD; Tycko R
    J Magn Reson; 2012 May; 218():115-27. PubMed ID: 22449573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics.
    Clore GM; Schwieters CD
    J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CABS-NMR--De novo tool for rapid global fold determination from chemical shifts, residual dipolar couplings and sparse methyl-methyl NOEs.
    Latek D; Kolinski A
    J Comput Chem; 2011 Feb; 32(3):536-44. PubMed ID: 20806263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuity conditions and torsion angles from ssNMR orientational restraints.
    Achuthan S; Asbury T; Hu J; Bertram R; Cross TA; Quine JR
    J Magn Reson; 2008 Mar; 191(1):24-30. PubMed ID: 18093855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein.
    Mueller GA; Choy WY; Yang D; Forman-Kay JD; Venters RA; Kay LE
    J Mol Biol; 2000 Jun; 300(1):197-212. PubMed ID: 10864509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A refinement protocol to determine structure, topology, and depth of insertion of membrane proteins using hybrid solution and solid-state NMR restraints.
    Shi L; Traaseth NJ; Verardi R; Cembran A; Gao J; Veglia G
    J Biomol NMR; 2009 Aug; 44(4):195-205. PubMed ID: 19597943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo determination of protein backbone structure from residual dipolar couplings using Rosetta.
    Rohl CA; Baker D
    J Am Chem Soc; 2002 Mar; 124(11):2723-9. PubMed ID: 11890823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic evaluation of CS-Rosetta for membrane protein structure prediction with sparse NOE restraints.
    Reichel K; Fisette O; Braun T; Lange OF; Hummer G; Schäfer LV
    Proteins; 2017 May; 85(5):812-826. PubMed ID: 27936510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using NMR Chemical Shifts and Cryo-EM Density Restraints in Iterative Rosetta-MD Protein Structure Refinement.
    Leelananda SP; Lindert S
    J Chem Inf Model; 2020 May; 60(5):2522-2532. PubMed ID: 31872764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR.
    Moy FJ; Chanda PK; Cosmi S; Pisano MR; Urbano C; Wilhelm J; Powers R
    Biochemistry; 1998 Feb; 37(6):1495-504. PubMed ID: 9484219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The solution structure of melanoma growth stimulating activity.
    Fairbrother WJ; Reilly D; Colby TJ; Hesselgesser J; Horuk R
    J Mol Biol; 1994 Sep; 242(3):252-70. PubMed ID: 8089846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid state NMR strategy for characterizing native membrane protein structures.
    Murray DT; Das N; Cross TA
    Acc Chem Res; 2013 Sep; 46(9):2172-81. PubMed ID: 23470103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hausdorff-based NOE assignment algorithm using protein backbone determined from residual dipolar couplings and rotamer patterns.
    Zeng J; Tripathy C; Zhou P; Donald BR
    Comput Syst Bioinformatics Conf; 2008; 7():169-81. PubMed ID: 19642278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus.
    Blake PR; Park JB; Zhou ZH; Hare DR; Adams MW; Summers MF
    Protein Sci; 1992 Nov; 1(11):1508-21. PubMed ID: 1303769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein structure prediction using sparse NOE and RDC restraints with Rosetta in CASP13.
    Kuenze G; Meiler J
    Proteins; 2019 Dec; 87(12):1341-1350. PubMed ID: 31292988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The high-resolution, three-dimensional solution structure of human interleukin-4 determined by multidimensional heteronuclear magnetic resonance spectroscopy.
    Powers R; Garrett DS; March CJ; Frieden EA; Gronenborn AM; Clore GM
    Biochemistry; 1993 Jul; 32(26):6744-62. PubMed ID: 8329398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.