BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 31077315)

  • 1. De novo transcriptome assembly: A comprehensive cross-species comparison of short-read RNA-Seq assemblers.
    Hölzer M; Marz M
    Gigascience; 2019 May; 8(5):. PubMed ID: 31077315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.
    Rana SB; Zadlock FJ; Zhang Z; Murphy WR; Bentivegna CS
    PLoS One; 2016; 11(4):e0153104. PubMed ID: 27054874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study.
    Zhao QY; Wang Y; Kong YM; Luo D; Li X; Hao P
    BMC Bioinformatics; 2011 Dec; 12 Suppl 14(Suppl 14):S2. PubMed ID: 22373417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive evaluation of de novo transcriptome assembly programs and their effects on differential gene expression analysis.
    Wang S; Gribskov M
    Bioinformatics; 2017 Feb; 33(3):327-333. PubMed ID: 28172640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments.
    Vijay N; Poelstra JW; Künstner A; Wolf JB
    Mol Ecol; 2013 Feb; 22(3):620-34. PubMed ID: 22998089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species.
    Madritsch S; Burg A; Sehr EM
    BMC Bioinformatics; 2021 Mar; 22(1):146. PubMed ID: 33752598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining independent de novo assemblies to optimize leaf transcriptome of Persian walnut.
    Sadat-Hosseini M; Bakhtiarizadeh MR; Boroomand N; Tohidfar M; Vahdati K
    PLoS One; 2020; 15(4):e0232005. PubMed ID: 32343733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative performance of transcriptome assembly methods for non-model organisms.
    Huang X; Chen XG; Armbruster PA
    BMC Genomics; 2016 Jul; 17():523. PubMed ID: 27464550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the quality of barley transcriptome de novo assembling by using a hybrid approach for lines with varying spike and stem coloration.
    Shmakov NА
    Vavilovskii Zhurnal Genet Selektsii; 2021 Feb; 25(1):30-38. PubMed ID: 34901701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data.
    Duan J; Xia C; Zhao G; Jia J; Kong X
    BMC Genomics; 2012 Aug; 13():392. PubMed ID: 22891638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data.
    Bushmanova E; Antipov D; Lapidus A; Prjibelski AD
    Gigascience; 2019 Sep; 8(9):. PubMed ID: 31494669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo transcriptome assembly for a non-model species, the blood-sucking bug Triatoma brasiliensis, a vector of Chagas disease.
    Marchant A; Mougel F; Almeida C; Jacquin-Joly E; Costa J; Harry M
    Genetica; 2015 Apr; 143(2):225-39. PubMed ID: 25233990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TransPi-a comprehensive TRanscriptome ANalysiS PIpeline for de novo transcriptome assembly.
    Rivera-Vicéns RE; Garcia-Escudero CA; Conci N; Eitel M; Wörheide G
    Mol Ecol Resour; 2022 Jul; 22(5):2070-2086. PubMed ID: 35119207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Application of De Novo RNA Assemblers for Proteomics Informed by Transcriptomics.
    Luge T; Fischer C; Sauer S
    J Proteome Res; 2016 Oct; 15(10):3938-3943. PubMed ID: 27523192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compacting and correcting Trinity and Oases RNA-Seq
    Cabau C; Escudié F; Djari A; Guiguen Y; Bobe J; Klopp C
    PeerJ; 2017; 5():e2988. PubMed ID: 28224052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. transXpress: a Snakemake pipeline for streamlined de novo transcriptome assembly and annotation.
    Fallon TR; Čalounová T; Mokrejš M; Weng JK; Pluskal T
    BMC Bioinformatics; 2023 Apr; 24(1):133. PubMed ID: 37016291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing de novo assembly of short-read RNA-seq data for phylogenomics.
    Yang Y; Smith SA
    BMC Genomics; 2013 May; 14():328. PubMed ID: 23672450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq.
    Lu B; Zeng Z; Shi T
    Sci China Life Sci; 2013 Feb; 56(2):143-55. PubMed ID: 23393030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compacta: a fast contig clustering tool for de novo assembled transcriptomes.
    Razo-Mendivil FG; Martínez O; Hayano-Kanashiro C
    BMC Genomics; 2020 Feb; 21(1):148. PubMed ID: 32046653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selecting Superior De Novo Transcriptome Assemblies: Lessons Learned by Leveraging the Best Plant Genome.
    Honaas LA; Wafula EK; Wickett NJ; Der JP; Zhang Y; Edger PP; Altman NS; Pires JC; Leebens-Mack JH; dePamphilis CW
    PLoS One; 2016; 11(1):e0146062. PubMed ID: 26731733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.