BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1582 related articles for article (PubMed ID: 31077390)

  • 21. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy.
    Xu Y; Bai T; Yan H; Ouyang L; Pompos A; Wang J; Zhou L; Jiang SB; Jia X
    Phys Med Biol; 2015 May; 60(9):3567-87. PubMed ID: 25860299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation and Clinical Application of a Commercially Available Iterative Reconstruction Algorithm for CBCT-Based IGRT.
    Mao W; Liu C; Gardner SJ; Siddiqui F; Snyder KC; Kumarasiri A; Zhao B; Kim J; Wen NW; Movsas B; Chetty IJ
    Technol Cancer Res Treat; 2019 Jan; 18():1533033818823054. PubMed ID: 30803367
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Planning CT-guided robust and fast cone-beam CT scatter correction using a local filtration technique.
    Cui H; Jiang X; Fang C; Zhu L; Yang Y
    Med Phys; 2021 Nov; 48(11):6832-6843. PubMed ID: 34662433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Empirical scatter correction: CBCT scatter artifact reduction without prior information.
    Trapp P; Maier J; Susenburger M; Sawall S; Kachelrieß M
    Med Phys; 2022 Jul; 49(7):4566-4584. PubMed ID: 35390181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A generalized image quality improvement strategy of cone-beam CT using multiple spectral CT labels in Pix2pix GAN.
    Jiang Y; Zhang Y; Luo C; Yang P; Wang J; Liang X; Zhao W; Li R; Niu T
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35487206
    [No Abstract]   [Full Text] [Related]  

  • 26. Adaptive scatter kernel deconvolution modeling for cone-beam CT scatter correction via deep reinforcement learning.
    Piao Z; Deng W; Huang S; Lin G; Qin P; Li X; Wu W; Qi M; Zhou L; Li B; Ma J; Xu Y
    Med Phys; 2024 Feb; 51(2):1163-1177. PubMed ID: 37459053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Task-based transferable deep-learning scatter correction in cone beam computed tomography: a simulation study.
    Cruz-Bastida JP; Moncada F; Martínez-Dávalos A; Rodríguez-Villafuerte M
    J Med Imaging (Bellingham); 2024 Mar; 11(2):024006. PubMed ID: 38525293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT.
    Reitz I; Hesse BM; Nill S; Tücking T; Oelfke U
    Z Med Phys; 2009; 19(3):158-72. PubMed ID: 19761093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scatter correction in cone-beam CT via a half beam blocker technique allowing simultaneous acquisition of scatter and image information.
    Lee H; Xing L; Lee R; Fahimian BP
    Med Phys; 2012 May; 39(5):2386-95. PubMed ID: 22559608
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Real-time scatter estimation for medical CT using the deep scatter estimation: Method and robustness analysis with respect to different anatomies, dose levels, tube voltages, and data truncation.
    Maier J; Eulig E; Vöth T; Knaup M; Kuntz J; Sawall S; Kachelrieß M
    Med Phys; 2019 Jan; 46(1):238-249. PubMed ID: 30390295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scatter correction for full-fan volumetric CT using a stationary beam blocker in a single full scan.
    Niu T; Zhu L
    Med Phys; 2011 Nov; 38(11):6027-38. PubMed ID: 22047367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binary moving-blocker-based scatter correction in cone-beam computed tomography with width-truncated projections: proof of concept.
    Lee H; Fahimian BP; Xing L
    Phys Med Biol; 2017 Mar; 62(6):2176-2193. PubMed ID: 28079527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ScatterNet: A convolutional neural network for cone-beam CT intensity correction.
    Hansen DC; Landry G; Kamp F; Li M; Belka C; Parodi K; Kurz C
    Med Phys; 2018 Nov; 45(11):4916-4926. PubMed ID: 30199101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scatter correction for cone-beam CT via scatter kernel superposition-inspired convolutional neural network.
    Zhuo X; Lu Y; Hua Y; Liu H; Zhang Y; Hao S; Wan L; Xie Q; Ji X; Chen Y
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36821861
    [No Abstract]   [Full Text] [Related]  

  • 35. Acuros CTS: A fast, linear Boltzmann transport equation solver for computed tomography scatter - Part II: System modeling, scatter correction, and optimization.
    Wang A; Maslowski A; Messmer P; Lehmann M; Strzelecki A; Yu E; Paysan P; Brehm M; Munro P; Star-Lack J; Seghers D
    Med Phys; 2018 May; 45(5):1914-1925. PubMed ID: 29509973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytic image reconstruction from partial data for a single-scan cone-beam CT with scatter correction.
    Min J; Pua R; Kim I; Han B; Cho S
    Med Phys; 2015 Nov; 42(11):6625-40. PubMed ID: 26520753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Image-based shading correction for narrow-FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning.
    Rossi M; Belotti G; Paganelli C; Pella A; Barcellini A; Cerveri P; Baroni G
    Med Phys; 2021 Nov; 48(11):7112-7126. PubMed ID: 34636429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved scatter correction using adaptive scatter kernel superposition.
    Sun M; Star-Lack JM
    Phys Med Biol; 2010 Nov; 55(22):6695-720. PubMed ID: 21030750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN).
    Jiang Y; Yang C; Yang P; Hu X; Luo C; Xue Y; Xu L; Hu X; Zhang L; Wang J; Sheng K; Niu T
    Phys Med Biol; 2019 Jul; 64(14):145003. PubMed ID: 31117060
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning.
    Nomura Y; Tanaka S; Wang J; Shirato H; Shimizu S; Xing L
    Phys Med Biol; 2021 Mar; 66(6):065029. PubMed ID: 33626513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 80.