These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31077565)

  • 1. Mono-/Multinuclear Water Oxidation Catalysts.
    Zhang Q; Guan J
    ChemSusChem; 2019 Jul; 12(14):3209-3235. PubMed ID: 31077565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands.
    Duan L; Wang L; Li F; Li F; Sun L
    Acc Chem Res; 2015 Jul; 48(7):2084-96. PubMed ID: 26131964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering structure-activity relationships in manganese-oxide-based heterogeneous catalysts for efficient water oxidation.
    Indra A; Menezes PW; Driess M
    ChemSusChem; 2015 Mar; 8(5):776-85. PubMed ID: 25641823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-based homogeneous and heterogeneous catalysts for electrochemical water oxidation.
    Lee H; Wu X; Sun L
    Nanoscale; 2020 Feb; 12(7):4187-4218. PubMed ID: 32022815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation.
    Zhang LH; Mathew S; Hessels J; Reek JNH; Yu F
    ChemSusChem; 2021 Jan; 14(1):234-250. PubMed ID: 32991076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hematite-Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono- and Multilayers of Iridium Oxygen-Evolution Catalysts.
    Li W; Sheehan SW; He D; He Y; Yao X; Grimm RL; Brudvig GW; Wang D
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11428-32. PubMed ID: 26184365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis of a Single Transition Metal Site for Water Oxidation: From Mononuclear Molecules to Single Atoms.
    Zhang H; Tian W; Duan X; Sun H; Liu S; Wang S
    Adv Mater; 2020 May; 32(18):e1904037. PubMed ID: 31793723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin Two-Dimensional Nanostructured Materials for Highly Efficient Water Oxidation.
    Zhang W; Zhou K
    Small; 2017 Aug; 13(32):. PubMed ID: 28657693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysts Based on Earth-Abundant Metals for Visible Light-Driven Water Oxidation Reaction.
    Lin J; Han Q; Ding Y
    Chem Rec; 2018 Nov; 18(11):1531-1547. PubMed ID: 29863815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical activation of Cp* iridium complexes for electrode-driven water-oxidation catalysis.
    Thomsen JM; Sheehan SW; Hashmi SM; Campos J; Hintermair U; Crabtree RH; Brudvig GW
    J Am Chem Soc; 2014 Oct; 136(39):13826-34. PubMed ID: 25188635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pentanuclear Scaffold: A Molecular Platform for Small-Molecule Conversions.
    Kondo M; Masaoka S
    Acc Chem Res; 2020 Oct; 53(10):2140-2151. PubMed ID: 32870647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of mononuclear ruthenium catalysts for low-overpotential water oxidation.
    Okamura M; Masaoka S
    Chem Asian J; 2015 Feb; 10(2):306-15. PubMed ID: 25318678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Homogeneous Electrocatalytic Water Oxidation by a Manganese Cluster with an Overpotential of Only 74 mV.
    Ghosh T; Maayan G
    Angew Chem Int Ed Engl; 2019 Feb; 58(9):2785-2790. PubMed ID: 30648785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Foot of the Wave Analysis for Mechanistic Elucidation and Benchmarking Applications in Molecular Water Oxidation Catalysis.
    Matheu R; Neudeck S; Meyer F; Sala X; Llobet A
    ChemSusChem; 2016 Dec; 9(23):3361-3369. PubMed ID: 27863132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are DFT Methods Accurate in Mononuclear Ruthenium-Catalyzed Water Oxidation? An ab Initio Assessment.
    Kang R; Yao J; Chen H
    J Chem Theory Comput; 2013 Apr; 9(4):1872-9. PubMed ID: 26583539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives.
    Li J; Triana CA; Wan W; Adiyeri Saseendran DP; Zhao Y; Balaghi SE; Heidari S; Patzke GR
    Chem Soc Rev; 2021 Mar; 50(4):2444-2485. PubMed ID: 33404560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water Oxidation Catalysts for Artificial Photosynthesis.
    Ye S; Ding C; Liu M; Wang A; Huang Q; Li C
    Adv Mater; 2019 Dec; 31(50):e1902069. PubMed ID: 31495962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of bioinspired Mn4O4-cubane water oxidation catalysts: lessons from photosynthesis.
    Dismukes GC; Brimblecombe R; Felton GA; Pryadun RS; Sheats JE; Spiccia L; Swiegers GF
    Acc Chem Res; 2009 Dec; 42(12):1935-43. PubMed ID: 19908827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin Spinel-Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation.
    Bao J; Zhang X; Fan B; Zhang J; Zhou M; Yang W; Hu X; Wang H; Pan B; Xie Y
    Angew Chem Int Ed Engl; 2015 Jun; 54(25):7399-404. PubMed ID: 25951435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation.
    Kärkäs MD; Johnston EV; Verho O; Akermark B
    Acc Chem Res; 2014 Jan; 47(1):100-11. PubMed ID: 23957573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.