These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 31077567)
1. Ultrafine particle deposition in a realistic human airway at multiple inhalation scenarios. Dong J; Shang Y; Tian L; Inthavong K; Qiu D; Tu J Int J Numer Method Biomed Eng; 2019 Jul; 35(7):e3215. PubMed ID: 31077567 [TBL] [Abstract][Full Text] [Related]
2. Correlation of regional deposition dosage for inhaled nanoparticles in human and rat olfactory. Tian L; Shang Y; Chen R; Bai R; Chen C; Inthavong K; Tu J Part Fibre Toxicol; 2019 Jan; 16(1):6. PubMed ID: 30683122 [TBL] [Abstract][Full Text] [Related]
3. Inhalation Exposure Analysis of Lung-Inhalable Particles in an Approximate Rat Central Airway. Dong J; Ma J; Tian L; Inthavong K; Tu J Int J Environ Res Public Health; 2019 Jul; 16(14):. PubMed ID: 31323852 [TBL] [Abstract][Full Text] [Related]
4. Respiratory deposition of ultrafine welding fume particles. Su WC; Chen Y; Bezerra M; Wang J J Occup Environ Hyg; 2019 Oct; 16(10):694-706. PubMed ID: 31461396 [TBL] [Abstract][Full Text] [Related]
5. Transport and deposition of ultrafine particles in the upper tracheobronchial tree: a comparative study between approximate and realistic respiratory tract models. Dong J; Li J; Tian L; Tu J Comput Methods Biomech Biomed Engin; 2021 Aug; 24(10):1125-1135. PubMed ID: 33410725 [TBL] [Abstract][Full Text] [Related]
6. A combined experimental and numerical study on upper airway dosimetry of inhaled nanoparticles from an electrical discharge machine shop. Tian L; Shang Y; Chen R; Bai R; Chen C; Inthavong K; Tu J Part Fibre Toxicol; 2017 Jul; 14(1):24. PubMed ID: 28701167 [TBL] [Abstract][Full Text] [Related]
7. Computational fluid-particle dynamics modeling of ultrafine to coarse particles deposition in the human respiratory system, down to the terminal bronchiole. Khoa ND; Li S; Phuong NL; Kuga K; Yabuuchi H; Kan-O K; Matsumoto K; Ito K Comput Methods Programs Biomed; 2023 Jul; 237():107589. PubMed ID: 37167881 [TBL] [Abstract][Full Text] [Related]
8. Simulation of bronchial mucociliary clearance of insoluble particles by computational fluid and particle dynamics methods. Farkas A; Szöke I Inhal Toxicol; 2013 Aug; 25(10):593-605. PubMed ID: 23937417 [TBL] [Abstract][Full Text] [Related]
9. Fine and ultrafine particle doses in the respiratory tract from digital printing operations. Voliotis A; Karali I; Kouras A; Samara C Environ Sci Pollut Res Int; 2017 Jan; 24(3):3027-3037. PubMed ID: 27848134 [TBL] [Abstract][Full Text] [Related]
10. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation. Carrigy NB; Ruzycki CA; Golshahi L; Finlay WH J Aerosol Med Pulm Drug Deliv; 2014 Jun; 27(3):149-69. PubMed ID: 24870701 [TBL] [Abstract][Full Text] [Related]
11. Dosimetric adjustments for interspecies extrapolation of inhaled poorly soluble particles (PSP). Jarabek AM; Asgharian B; Miller FJ Inhal Toxicol; 2005; 17(7-8):317-34. PubMed ID: 16020031 [TBL] [Abstract][Full Text] [Related]
12. Effects of concentrated ambient particles on normal and hypersecretory airways in rats. Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855 [TBL] [Abstract][Full Text] [Related]
13. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns. Kadota K; Inoue N; Matsunaga Y; Takemiya T; Kubo K; Imano H; Uchiyama H; Tozuka Y J Pharm Pharmacol; 2020 Jan; 72(1):17-28. PubMed ID: 31713883 [TBL] [Abstract][Full Text] [Related]
14. Quantification of local deposition patterns of inhaled radon decay products in human bronchial airway bifurcations. Balásházy I; Hofmann W Health Phys; 2000 Feb; 78(2):147-58. PubMed ID: 10647981 [TBL] [Abstract][Full Text] [Related]
15. Ultrafine urban particle measurements in Budapest and their airway deposition distribution calculation. Füri P; Groma V; Török S; Farkas Á; Dian C Inhal Toxicol; 2020; 32(13-14):494-502. PubMed ID: 33283557 [TBL] [Abstract][Full Text] [Related]
16. Numerical analysis of nanoparticle transport and deposition in a cynomolgus monkey nasal passage. Dong J; Ma J; Tian L; Inthavong K; Ito K; Tu J Int J Numer Method Biomed Eng; 2021 Feb; 37(2):e3414. PubMed ID: 33205913 [TBL] [Abstract][Full Text] [Related]
17. Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics. Pourmehran O; Gorji TB; Gorji-Bandpy M Biomech Model Mechanobiol; 2016 Oct; 15(5):1355-74. PubMed ID: 26886215 [TBL] [Abstract][Full Text] [Related]
18. Simulation of deposition and clearance of inhaled particles in central human airways. Balásházy I; Farkas A; Szöke I; Hofmann W; Sturm R Radiat Prot Dosimetry; 2003; 105(1-4):129-32. PubMed ID: 14526942 [TBL] [Abstract][Full Text] [Related]
19. Ultrafine particle transport and deposition in a large scale 17-generation lung model. Islam MS; Saha SC; Sauret E; Gemci T; Yang IA; Gu YT J Biomech; 2017 Nov; 64():16-25. PubMed ID: 28916396 [TBL] [Abstract][Full Text] [Related]
20. Numerical modeling of nanoparticle deposition in realistic monkey airway and human airway models: a comparative study. Dang Khoa N; Phuong NL; Ito K Inhal Toxicol; 2020 Jun; 32(7):311-325. PubMed ID: 32729366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]