These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 31077762)

  • 21. Induction of antigen-specific immune tolerance using biodegradable nanoparticles containing antigen and dexamethasone.
    Kim SH; Moon JH; Jeong SU; Jung HH; Park CS; Hwang BY; Lee CK
    Int J Nanomedicine; 2019; 14():5229-5242. PubMed ID: 31371958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-step conjugation of bioactive peptides to proteins via a self-contained succinimidyl bis-arylhydrazone.
    Phillips JA; Morgan EL; Dong Y; Cole GT; McMahan C; Hung CY; Sanderson SD
    Bioconjug Chem; 2009 Oct; 20(10):1950-7. PubMed ID: 19788175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A nanovaccine formulation of Chlamydia recombinant MOMP encapsulated in PLGA 85:15 nanoparticles augments CD4
    Sahu R; Dixit S; Verma R; Duncan SA; Coats MT; Giambartolomei GH; Singh SR; Dennis VA
    Nanomedicine; 2020 Oct; 29():102257. PubMed ID: 32610072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles.
    Hamdy S; Elamanchili P; Alshamsan A; Molavi O; Satou T; Samuel J
    J Biomed Mater Res A; 2007 Jun; 81(3):652-62. PubMed ID: 17187395
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Toll-like receptor 2 agonist-fused antigen enhanced antitumor immunity by increasing antigen presentation and the CD8 memory T cells population.
    Wu CC; Liu SJ; Chen HW; Shen KY; Leng CH
    Oncotarget; 2016 May; 7(21):30804-19. PubMed ID: 27127171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mucosal vaccine using CTL epitope-pulsed dendritic cell confers protection for intracellular pathogen.
    Ozawa Y; Suda T; Nagata T; Hashimoto D; Nakamura Y; Enomoto N; Inui N; Koide Y; Nakamura H; Chida K
    Am J Respir Cell Mol Biol; 2009 Oct; 41(4):440-8. PubMed ID: 19202004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination.
    Nembrini C; Stano A; Dane KY; Ballester M; van der Vlies AJ; Marsland BJ; Swartz MA; Hubbell JA
    Proc Natl Acad Sci U S A; 2011 Nov; 108(44):E989-97. PubMed ID: 21969597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust mucosal and systemic responses against HTLV-1 by delivery of multi-epitope vaccine in PLGA nanoparticles.
    Kabiri M; Sankian M; Sadri K; Tafaghodi M
    Eur J Pharm Biopharm; 2018 Dec; 133():321-330. PubMed ID: 30408519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells.
    Stary G; Olive A; Radovic-Moreno AF; Gondek D; Alvarez D; Basto PA; Perro M; Vrbanac VD; Tager AM; Shi J; Yethon JA; Farokhzad OC; Langer R; Starnbach MN; von Andrian UH
    Science; 2015 Jun; 348(6241):aaa8205. PubMed ID: 26089520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoparticle size influences the magnitude and quality of mucosal immune responses after intranasal immunization.
    Stano A; Nembrini C; Swartz MA; Hubbell JA; Simeoni E
    Vaccine; 2012 Dec; 30(52):7541-6. PubMed ID: 23103199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein corona-mediated targeting of nanocarriers to B cells allows redirection of allergic immune responses.
    Shen L; Tenzer S; Storck W; Hobernik D; Raker VK; Fischer K; Decker S; Dzionek A; Krauthäuser S; Diken M; Nikolaev A; Maxeiner J; Schuster P; Kappel C; Verschoor A; Schild H; Grabbe S; Bros M
    J Allergy Clin Immunol; 2018 Nov; 142(5):1558-1570. PubMed ID: 29382591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lymphatic-targeted cationic liposomes: a robust vaccine adjuvant for promoting long-term immunological memory.
    Wang C; Liu P; Zhuang Y; Li P; Jiang B; Pan H; Liu L; Cai L; Ma Y
    Vaccine; 2014 Sep; 32(42):5475-83. PubMed ID: 25110295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses.
    Kang S; Ahn S; Lee J; Kim JY; Choi M; Gujrati V; Kim H; Kim J; Shin EC; Jon S
    J Control Release; 2017 Jun; 256():56-67. PubMed ID: 28428066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generation of effector memory T cell-based mucosal and systemic immunity with pulmonary nanoparticle vaccination.
    Li AV; Moon JJ; Abraham W; Suh H; Elkhader J; Seidman MA; Yen M; Im EJ; Foley MH; Barouch DH; Irvine DJ
    Sci Transl Med; 2013 Sep; 5(204):204ra130. PubMed ID: 24068737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study.
    Cruz LJ; Rosalia RA; Kleinovink JW; Rueda F; Löwik CW; Ossendorp F
    J Control Release; 2014 Oct; 192():209-18. PubMed ID: 25068703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The
    Verma R; Sahu R; Dixit S; Duncan SA; Giambartolomei GH; Singh SR; Dennis VA
    Front Immunol; 2018; 9():2369. PubMed ID: 30374357
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticles with CD44 Targeting and ROS Triggering Properties as Effective in Vivo Antigen Delivery System.
    Liang X; Li X; Duan J; Chen Y; Wang X; Pang L; Kong D; Song B; Li C; Yang J
    Mol Pharm; 2018 Feb; 15(2):508-518. PubMed ID: 29323913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Administration Routes of Polyethylenimine-Coated PLGA Nanoparticles Encapsulating Angelica Sinensis Polysaccharide Vaccine Delivery System Affect Immune Responses.
    Gu P; Zhang Y; Cai G; Liu Z; Hu Y; Liu J; Wang D
    Mol Pharm; 2021 Jun; 18(6):2274-2284. PubMed ID: 33926191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PLGA nanoparticles enhance the expression of retinaldehyde dehydrogenase enzymes in dendritic cells and induce FoxP3(+) T-cells in vitro.
    Keijzer C; Spiering R; Silva AL; van Eden W; Jiskoot W; Vervelde L; Broere F
    J Control Release; 2013 May; 168(1):35-40. PubMed ID: 23500056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthetic nanoparticle vaccines produced by layer-by-layer assembly of artificial biofilms induce potent protective T-cell and antibody responses in vivo.
    Powell TJ; Palath N; DeRome ME; Tang J; Jacobs A; Boyd JG
    Vaccine; 2011 Jan; 29(3):558-69. PubMed ID: 20951665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.