BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31077851)

  • 1. Skeletal macro- and microstructure adaptations in men undergoing arduous military training.
    O'Leary TJ; Izard RM; Walsh NP; Tang JCY; Fraser WD; Greeves JP
    Bone; 2019 Aug; 125():54-60. PubMed ID: 31077851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tibial Macrostructure and Microarchitecture Adaptations in Women During 44 Weeks of Arduous Military Training.
    O'Leary TJ; Wardle SL; Gifford RM; Double RL; Reynolds RM; Woods DR; Greeves JP
    J Bone Miner Res; 2021 Jul; 36(7):1300-1315. PubMed ID: 33856703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in tibial bone microarchitecture in female recruits in response to 8 weeks of U.S. Army Basic Combat Training.
    Hughes JM; Gaffney-Stomberg E; Guerriere KI; Taylor KM; Popp KL; Xu C; Unnikrishnan G; Staab JS; Matheny RW; McClung JP; Reifman J; Bouxsein ML
    Bone; 2018 Aug; 113():9-16. PubMed ID: 29709620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased density and periosteal expansion of the tibia in young adult men following short-term arduous training.
    Izard RM; Fraser WD; Negus C; Sale C; Greeves JP
    Bone; 2016 Jul; 88():13-19. PubMed ID: 27046087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex differences in tibial adaptations to arduous training: An observational cohort study.
    O'Leary TJ; Izard RM; Tang JCY; Fraser WD; Greeves JP
    Bone; 2022 Jul; 160():116426. PubMed ID: 35470123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex differences in parameters of bone strength in new recruits: beyond bone density.
    Evans RK; Negus C; Antczak AJ; Yanovich R; Israeli E; Moran DS
    Med Sci Sports Exerc; 2008 Nov; 40(11 Suppl):S645-53. PubMed ID: 18849870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distal Tibial Bone Properties and Bone Stress Injury Risk in Young Men Undergoing Arduous Physical Training.
    Eastman K; O'Leary TJ; Carswell A; Walsh N; Izard R; Fraser W; Greeves J
    Calcif Tissue Int; 2023 Sep; 113(3):317-328. PubMed ID: 37481657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regional Changes in Density and Microarchitecture in the Ultradistal Tibia of Female Recruits After U.S. Army Basic Combat Training.
    Sundaramurthy A; Xu C; Hughes JM; Gaffney-Stomberg E; Guerriere KI; Popp KL; Bouxsein ML; Reifman J; Unnikrishnan G
    Calcif Tissue Int; 2019 Jul; 105(1):68-76. PubMed ID: 31011765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
    Ward KA; Roberts SA; Adams JE; Mughal MZ
    Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone microarchitecture in adolescent boys with autism spectrum disorder.
    Neumeyer AM; Cano Sokoloff N; McDonnell E; Macklin EA; McDougle CJ; Misra M
    Bone; 2017 Apr; 97():139-146. PubMed ID: 28088646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sport-specific association between exercise loading and the density, geometry, and microstructure of weight-bearing bone in young adult men.
    Nilsson M; Ohlsson C; Mellström D; Lorentzon M
    Osteoporos Int; 2013 May; 24(5):1613-22. PubMed ID: 23011682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hormonal contraceptive use is associated with altered bone structural and metabolic responses to military training in women: An observational cohort study.
    O'Leary TJ; Izard RM; Tang JCY; Fraser WD; Greeves JP
    Bone; 2024 Apr; 181():117012. PubMed ID: 38216077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone Stress Injuries Are Associated With Differences in Bone Microarchitecture in Male Professional Soldiers.
    Schanda JE; Kocijan R; Resch H; Baierl A; Feichtinger X; Mittermayr R; Plachel F; Wakolbinger R; Wolff K; Fialka C; Gruther W; Muschitz C
    J Orthop Res; 2019 Dec; 37(12):2516-2523. PubMed ID: 31410876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD study.
    Lorentzon M; Mellström D; Ohlsson C
    J Bone Miner Res; 2005 Nov; 20(11):1936-43. PubMed ID: 16234966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal responses to an all-female unassisted Antarctic traverse.
    O'Leary TJ; Gifford RM; Double RL; Reynolds RM; Woods DR; Wardle SL; Greeves JP
    Bone; 2019 Apr; 121():267-276. PubMed ID: 30735797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of trabecular bone microstructure in premenopausal women with distal radius fractures.
    Rozental TD; Johannesdottir F; Kempland KC; Bouxsein ML
    Osteoporos Int; 2018 Feb; 29(2):409-419. PubMed ID: 29101409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium and vitamin D supplementation maintains parathyroid hormone and improves bone density during initial military training: a randomized, double-blind, placebo controlled trial.
    Gaffney-Stomberg E; Lutz LJ; Rood JC; Cable SJ; Pasiakos SM; Young AJ; McClung JP
    Bone; 2014 Nov; 68():46-56. PubMed ID: 25118085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone mass at lumbar spine and tibia in young males--impact of physical fitness, exercise, and anthropometric parameters: a prospective study in a cohort of military recruits.
    Casez JP; Fischer S; Stüssi E; Stalder H; Gerber A; Delmas PD; Colombo JP; Jaeger P
    Bone; 1995 Sep; 17(3):211-9. PubMed ID: 8541133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of odanacatib on the radius and tibia of postmenopausal women: improvements in bone geometry, microarchitecture, and estimated bone strength.
    Cheung AM; Majumdar S; Brixen K; Chapurlat R; Fuerst T; Engelke K; Dardzinski B; Cabal A; Verbruggen N; Ather S; Rosenberg E; de Papp AE
    J Bone Miner Res; 2014 Aug; 29(8):1786-94. PubMed ID: 24643905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing bone impairment in ankylosing spondylitis (AS) using the trabecular bone score (TBS) and high-resolution peripheral quantitative computed tomography (HR-pQCT).
    Caparbo VF; Furlam P; Saad CGS; Alvarenga JC; Aubry-Rozier B; Hans D; de Brum-Fernandes AJ; Pereira RMR
    Bone; 2019 May; 122():8-13. PubMed ID: 30708186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.