These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Application of ensemble machine learning model in downscaling and projecting climate variables over different climate regions in Iran. Asadollah SBHS; Sharafati A; Shahid S Environ Sci Pollut Res Int; 2022 Mar; 29(12):17260-17279. PubMed ID: 34664165 [TBL] [Abstract][Full Text] [Related]
23. Modeling the impacts of extreme climate scenarios on soil acidity (pH and exchangeable aluminum) in Abbay River Basin, Ethiopia. Benti Chalchissa F; Kuris BK Heliyon; 2024 Jun; 10(12):e33448. PubMed ID: 39027433 [TBL] [Abstract][Full Text] [Related]
24. Drought risk assessment under climate change is sensitive to methodological choices for the estimation of evaporative demand. Dewes CF; Rangwala I; Barsugli JJ; Hobbins MT; Kumar S PLoS One; 2017; 12(3):e0174045. PubMed ID: 28301603 [TBL] [Abstract][Full Text] [Related]
25. Environmental water demand assessment under climate change conditions. Sarzaeim P; Bozorg-Haddad O; Fallah-Mehdipour E; Loáiciga HA Environ Monit Assess; 2017 Jul; 189(7):359. PubMed ID: 28660541 [TBL] [Abstract][Full Text] [Related]
27. New climate change scenarios for the Netherlands. van den Hurk B; Tank AK; Lenderink G; Ulden Av; Oldenborgh GJ; Katsman C; Brink Hv; Keller F; Bessembinder J; Burgers G; Komen G; Hazeleger W; Drijfhout S Water Sci Technol; 2007; 56(4):27-33. PubMed ID: 17851202 [TBL] [Abstract][Full Text] [Related]
28. A multi-scenario ensemble approach incorporating stepwise cluster analysis to reduce uncertainty in large-scale watershed precipitation projections: a case study of Pearl River Basin, South China. Qi Z; Cai Y; Xie Y; Zhang P; Zhang X; Zhou W Environ Sci Pollut Res Int; 2024 Oct; 31(49):59342-59362. PubMed ID: 39348021 [TBL] [Abstract][Full Text] [Related]
29. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada. Shrestha NK; Du X; Wang J Sci Total Environ; 2017 Dec; 601-602():425-440. PubMed ID: 28570976 [TBL] [Abstract][Full Text] [Related]
30. Current and Future Climate Extremes Over Latin America and Caribbean: Assessing Earth System Models from High Resolution Model Intercomparison Project (HighResMIP). Avila-Diaz A; Torres RR; Zuluaga CF; Cerón WL; Oliveira L; Benezoli V; Rivera IA; Marengo JA; Wilson AB; Medeiros F Earth Syst Environ; 2023; 7(1):99-130. PubMed ID: 36569783 [TBL] [Abstract][Full Text] [Related]
31. Projected wetland densities under climate change: habitat loss but little geographic shift in conservation strategy. Sofaer HR; Skagen SK; Barsugli JJ; Rashford BS; Reese GC; Hoeting JA; Wood AW; Noon BR Ecol Appl; 2016 Sep; 26(6):1677-1692. PubMed ID: 27755694 [TBL] [Abstract][Full Text] [Related]
32. Exponential increases in high-temperature extremes in North America. Davariashtiyani A; Taherkhani M; Fattahpour S; Vitousek S Sci Rep; 2023 Nov; 13(1):19177. PubMed ID: 37932278 [TBL] [Abstract][Full Text] [Related]
33. A new statistical downscaling approach for global evaluation of the CMIP5 precipitation outputs: Model development and application. Zhang Q; Shen Z; Xu CY; Sun P; Hu P; He C Sci Total Environ; 2019 Nov; 690():1048-1067. PubMed ID: 31470471 [TBL] [Abstract][Full Text] [Related]
34. A two-step downscaling method for high-scale super-resolution of daily temperature - a case study of Wei River Basin, China. Li X; Zhou Y; Zhang M; Sha J; Wang ZL Environ Sci Pollut Res Int; 2023 Mar; 30(12):32474-32488. PubMed ID: 36460889 [TBL] [Abstract][Full Text] [Related]
35. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok). Trang NTT; Shrestha S; Shrestha M; Datta A; Kawasaki A Sci Total Environ; 2017 Jan; 576():586-598. PubMed ID: 27810747 [TBL] [Abstract][Full Text] [Related]
36. Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach. Kumar P; Wiltshire A; Mathison C; Asharaf S; Ahrens B; Lucas-Picher P; Christensen JH; Gobiet A; Saeed F; Hagemann S; Jacob D Sci Total Environ; 2013 Dec; 468-469 Suppl():S18-30. PubMed ID: 23541400 [TBL] [Abstract][Full Text] [Related]
37. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts. Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075 [TBL] [Abstract][Full Text] [Related]
38. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP). Ruane AC; McDermid S; Rosenzweig C; Baigorria GA; Jones JW; Romero CC; Dewayne Cecil L Glob Chang Biol; 2014 Feb; 20(2):394-407. PubMed ID: 24115520 [TBL] [Abstract][Full Text] [Related]
40. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method. Kara F; Yucel I Environ Monit Assess; 2015 Sep; 187(9):580. PubMed ID: 26293893 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]