These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31077987)

  • 1. Hydrogel optical fibers for continuous glucose monitoring.
    Elsherif M; Hassan MU; Yetisen AK; Butt H
    Biosens Bioelectron; 2019 Jul; 137():25-32. PubMed ID: 31077987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time optical fiber sensors based on light diffusing microlens arrays.
    Elsherif M; Moreddu R; Hassan MU; Yetisen AK; Butt H
    Lab Chip; 2019 Jun; 19(12):2060-2070. PubMed ID: 31114826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of glucose levels using a functionalized hydrogel-optical fiber biosensor: toward continuous monitoring of blood glucose in vivo.
    Tierney S; Falch BM; Hjelme DR; Stokke BT
    Anal Chem; 2009 May; 81(9):3630-6. PubMed ID: 19323502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous glucose sensing with fluorescent thin-film hydrogels. 2. Fiber optic sensor fabrication and in vitro testing.
    Thoniyot P; Cappuccio FE; Gamsey S; Cordes DB; Wessling RA; Singaram B
    Diabetes Technol Ther; 2006 Jun; 8(3):279-87. PubMed ID: 16800749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wearable microneedle patch incorporating reversible FRET-based hydrogel sensors for continuous glucose monitoring.
    Hu Y; Pan Z; De Bock M; Tan TX; Wang Y; Shi Y; Yan N; Yetisen AK
    Biosens Bioelectron; 2024 Oct; 262():116542. PubMed ID: 38991372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Contact Lens Biosensors for Continuous Glucose Monitoring Using Smartphones.
    Elsherif M; Hassan MU; Yetisen AK; Butt H
    ACS Nano; 2018 Jun; 12(6):5452-5462. PubMed ID: 29750502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous glucose detection using boronic acid-substituted viologens in fluorescent hydrogels: linker effects and extension to fiber optics.
    Gamsey S; Suri JT; Wessling RA; Singaram B
    Langmuir; 2006 Oct; 22(21):9067-74. PubMed ID: 17014156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passive and wireless, implantable glucose sensing with phenylboronic acid hydrogel-interlayer RF resonators.
    Dautta M; Alshetaiwi M; Escobar J; Tseng P
    Biosens Bioelectron; 2020 Mar; 151():112004. PubMed ID: 31999570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform.
    Tierney S; Volden S; Stokke BT
    Biosens Bioelectron; 2009 Mar; 24(7):2034-9. PubMed ID: 19062267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose Sensing with Phenylboronic Acid Functionalized Hydrogel-Based Optical Diffusers.
    Elsherif M; Hassan MU; Yetisen AK; Butt H
    ACS Nano; 2018 Mar; 12(3):2283-2291. PubMed ID: 29529366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin hydrogel films for rapid optical biosensing.
    Zhang X; Guan Y; Zhang Y
    Biomacromolecules; 2012 Jan; 13(1):92-7. PubMed ID: 22136353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of swelling of responsive gels with nanometer resolution. Fiber-optic based platform for hydrogels as signal transducers.
    Tierney S; Hjelme DR; Stokke BT
    Anal Chem; 2008 Jul; 80(13):5086-93. PubMed ID: 18491924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difunctional Hydrogel Optical Fiber Fluorescence Sensor for Continuous and Simultaneous Monitoring of Glucose and pH.
    Li Y; Luo S; Gui Y; Wang X; Tian Z; Yu H
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36832053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Function Wearable Hydrogel Optical Fiber for Monitoring Posture and Sweat pH.
    Zhang Z; Li K; Li Y; Zhang Q; Wang H; Hou C
    ACS Sens; 2024 Jun; 9(6):3413-3422. PubMed ID: 38887933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA Aptamer Functionalized Hydrogels for Interferometric Fiber-Optic Based Continuous Monitoring of Potassium Ions.
    Žuržul N; Stokke BT
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-Sensitive Hydrogel Optical Fibers Functionalized with Phenylboronic Acid.
    Yetisen AK; Jiang N; Fallahi A; Montelongo Y; Ruiz-Esparza GU; Tamayol A; Zhang YS; Mahmood I; Yang SA; Kim KS; Butt H; Khademhosseini A; Yun SH
    Adv Mater; 2017 Apr; 29(15):. PubMed ID: 28195436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A label-free fiber-optic Turbidity Affinity Sensor (TAS) for continuous glucose monitoring.
    Dutt-Ballerstadt R; Evans C; Pillai AP; Gowda A
    Biosens Bioelectron; 2014 Nov; 61():280-4. PubMed ID: 24906086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Polysaccharide-Based Hydrogel Photonic Constructs: From Multiscale Detection to the Biofabrication of Living Optical Fibers.
    Guimarães CF; Ahmed R; Mataji-Kojouri A; Soto F; Wang J; Liu S; Stoyanova T; Marques AP; Reis RL; Demirci U
    Adv Mater; 2021 Dec; 33(52):e2105361. PubMed ID: 34617338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-Core Hydrogel Optical Fiber Fluorescence Probes.
    Liu T; Ding H; Huang J; Zhan C; Wang S
    ACS Sens; 2022 Nov; 7(11):3298-3307. PubMed ID: 36283762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-Term Continuous Glucose Monitoring Using a Fluorescence-Based Biocompatible Hydrogel Glucose Sensor.
    Sawayama J; Takeuchi S
    Adv Healthc Mater; 2021 Feb; 10(3):e2001286. PubMed ID: 33191660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.