These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 31078594)
1. Preparation, characterization and evaluation of cellulose nanocrystal/poly(lactic acid) in situ nanocomposite scaffolds for tissue engineering. Luo W; Cheng L; Yuan C; Wu Z; Yuan G; Hou M; Chen JY; Luo C; Li W Int J Biol Macromol; 2019 Aug; 134():469-479. PubMed ID: 31078594 [TBL] [Abstract][Full Text] [Related]
2. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. Zhou C; Shi Q; Guo W; Terrell L; Qureshi AT; Hayes DJ; Wu Q ACS Appl Mater Interfaces; 2013 May; 5(9):3847-54. PubMed ID: 23590943 [TBL] [Abstract][Full Text] [Related]
3. Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Zhang C; Salick MR; Cordie TM; Ellingham T; Dan Y; Turng LS Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():463-471. PubMed ID: 25686973 [TBL] [Abstract][Full Text] [Related]
4. Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering. Patel DK; Dutta SD; Hexiu J; Ganguly K; Lim KT Int J Biol Macromol; 2020 Nov; 162():1429-1441. PubMed ID: 32755711 [TBL] [Abstract][Full Text] [Related]
5. The role of titanium dioxide on the morphology, microstructure, and bioactivity of grafted cellulose/hydroxyapatite nanocomposites for a potential application in bone repair. Saber-Samandari S; Yekta H; Ahmadi S; Alamara K Int J Biol Macromol; 2018 Jan; 106():481-488. PubMed ID: 28797809 [TBL] [Abstract][Full Text] [Related]
6. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity. Pal N; Dubey P; Gopinath P; Pal K Int J Biol Macromol; 2017 Feb; 95():94-105. PubMed ID: 27856322 [TBL] [Abstract][Full Text] [Related]
7. Enhancing long-term biodegradability and UV-shielding performances of transparent polylactic acid nanocomposite films by adding cellulose nanocrystal-zinc oxide hybrids. Wang YY; Yu HY; Yang L; Abdalkarim SYH; Chen WL Int J Biol Macromol; 2019 Dec; 141():893-905. PubMed ID: 31518619 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior. Borkotoky SS; Dhar P; Katiyar V Int J Biol Macromol; 2018 Jan; 106():433-446. PubMed ID: 28797817 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of chitosan-coated porous polycaprolactone/strontium-substituted bioactive glass nanocomposite scaffold for bone tissue engineering. Shaltooki M; Dini G; Mehdikhani M Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110138. PubMed ID: 31546409 [TBL] [Abstract][Full Text] [Related]
11. Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications. Zarei M; Hasanzadeh Azar M; Sayedain SS; Shabani Dargah M; Alizadeh R; Arab M; Askarinya A; Kaviani A; Beheshtizadeh N; Azami M Int J Biol Macromol; 2024 Jan; 255():128040. PubMed ID: 37981284 [TBL] [Abstract][Full Text] [Related]
12. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714 [TBL] [Abstract][Full Text] [Related]
13. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Shi Q; Zhou C; Yue Y; Guo W; Wu Y; Wu Q Carbohydr Polym; 2012 Sep; 90(1):301-8. PubMed ID: 24751045 [TBL] [Abstract][Full Text] [Related]
14. Reduced graphene oxide and PEG-grafted TEMPO-oxidized cellulose nanocrystal reinforced poly-lactic acid nanocomposite film for biomedical application. Pal N; Banerjee S; Roy P; Pal K Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109956. PubMed ID: 31499971 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of a mace-like cellulose nanocrystal@Ag nanosystem via in-situ growth for antibacterial activities of poly-L-lactide scaffold. Shuai C; Yuan X; Yang W; Peng S; Qian G; Zhao Z Carbohydr Polym; 2021 Jun; 262():117937. PubMed ID: 33838814 [TBL] [Abstract][Full Text] [Related]
16. Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties. Huan S; Liu G; Cheng W; Han G; Bai L Biomacromolecules; 2018 Mar; 19(3):1037-1046. PubMed ID: 29442497 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685 [TBL] [Abstract][Full Text] [Related]
18. Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering. Abdal-hay A; Sheikh FA; Lim JK Colloids Surf B Biointerfaces; 2013 Feb; 102():635-43. PubMed ID: 23107942 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Mechanical Properties in Cellulose Nanocrystal-Poly(oligoethylene glycol methacrylate) Injectable Nanocomposite Hydrogels through Control of Physical and Chemical Cross-Linking. De France KJ; Chan KJ; Cranston ED; Hoare T Biomacromolecules; 2016 Feb; 17(2):649-60. PubMed ID: 26741744 [TBL] [Abstract][Full Text] [Related]
20. Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites. Monika ; Dhar P; Katiyar V Int J Biol Macromol; 2017 Nov; 104(Pt A):827-836. PubMed ID: 28648639 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]