These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 31078859)
1. Arsenic concentrations after drinking water well installation: Time-varying effects on arsenic mobilization. Erickson ML; Malenda HF; Berquist EC; Ayotte JD Sci Total Environ; 2019 Aug; 678():681-691. PubMed ID: 31078859 [TBL] [Abstract][Full Text] [Related]
2. Months-long spike in aqueous arsenic following domestic well installation and disinfection: Short- and long-term drinking water quality implications. Erickson ML; Swanner ED; Ziegler BA; Havig JR J Hazard Mater; 2021 Jul; 414():125409. PubMed ID: 33677323 [TBL] [Abstract][Full Text] [Related]
3. How or When Samples Are Collected Affects Measured Arsenic Concentration in New Drinking Water Wells. Erickson ML; Malenda HF; Berquist EC Ground Water; 2018 Nov; 56(6):921-933. PubMed ID: 29417982 [TBL] [Abstract][Full Text] [Related]
4. Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States. Ayotte JD; Belaval M; Olson SA; Burow KR; Flanagan SM; Hinkle SR; Lindsey BD Sci Total Environ; 2015 Feb; 505():1370-9. PubMed ID: 24650751 [TBL] [Abstract][Full Text] [Related]
5. Arsenic in glacial drift aquifers and the implication for drinking water--lower Illinois River Basin. Warner KL Ground Water; 2001; 39(3):433-42. PubMed ID: 11341009 [TBL] [Abstract][Full Text] [Related]
6. Changes in arsenic exposure in Araihazar, Bangladesh from 2001 through 2015 following a blanket well testing and education campaign. Huhmann BL; Harvey CF; Navas-Acien A; Graziano J; Parvez F; Chen Y; Argos M; Ahmed A; Hasan AKMR; Ahsan H; van Geen A Environ Int; 2019 Apr; 125():82-89. PubMed ID: 30710803 [TBL] [Abstract][Full Text] [Related]
7. Sediment color tool for targeting arsenic-safe aquifers for the installation of shallow drinking water tubewells. Hossain M; Bhattacharya P; Frape SK; Jacks G; Islam MM; Rahman MM; von Brömssen M; Hasan MA; Ahmed KM Sci Total Environ; 2014 Sep; 493():615-25. PubMed ID: 24984232 [TBL] [Abstract][Full Text] [Related]
8. Hydrogeochemical controls on arsenic mobility in an arid inland basin, Southeast of Iran: The role of alkaline conditions and salt water intrusion. Dehbandi R; Abbasnejad A; Karimi Z; Herath I; Bundschuh J Environ Pollut; 2019 Jun; 249():910-922. PubMed ID: 30965543 [TBL] [Abstract][Full Text] [Related]
9. Performance Assessments of a Novel Well Design for Reducing Exposure to Bedrock-Derived Arsenic. Winston RB; Ayotte JD Ground Water; 2018 Sep; 56(5):762-769. PubMed ID: 28952163 [TBL] [Abstract][Full Text] [Related]
10. Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology. Crabbe H; Fletcher T; Close R; Watts MJ; Ander EL; Smedley PL; Verlander NQ; Gregory M; Middleton DRS; Polya DA; Studden M; Leonardi GS Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29194429 [TBL] [Abstract][Full Text] [Related]
11. Elevated childhood exposure to arsenic despite reduced drinking water concentrations--A longitudinal cohort study in rural Bangladesh. Kippler M; Skröder H; Rahman SM; Tofail F; Vahter M Environ Int; 2016 Jan; 86():119-25. PubMed ID: 26580026 [TBL] [Abstract][Full Text] [Related]
12. Hydrochemical controls on arsenic contamination and its health risks in the Comarca Lagunera region (Mexico): Implications of the scientific evidence for public health policy. Mahlknecht J; Aguilar-Barajas I; Farias P; Knappett PSK; Torres-Martínez JA; Hoogesteger J; Lara RH; Ramírez-Mendoza RA; Mora A Sci Total Environ; 2023 Jan; 857(Pt 1):159347. PubMed ID: 36228788 [TBL] [Abstract][Full Text] [Related]
13. Arsenic exposure in US public and domestic drinking water supplies: a comparative risk assessment. Kumar A; Adak P; Gurian PL; Lockwood JR J Expo Sci Environ Epidemiol; 2010 May; 20(3):245-54. PubMed ID: 19401722 [TBL] [Abstract][Full Text] [Related]
14. Arsenic in groundwater in eastern New England: occurrence, controls, and human health implications. Ayotte JD; Montgomery DL; Flanagan SM; Robinson KW Environ Sci Technol; 2003 May; 37(10):2075-83. PubMed ID: 12785510 [TBL] [Abstract][Full Text] [Related]
15. Elevated arsenic and manganese in groundwaters of Murshidabad, West Bengal, India. Sankar MS; Vega MA; Defoe PP; Kibria MG; Ford S; Telfeyan K; Neal A; Mohajerin TJ; Hettiarachchi GM; Barua S; Hobson C; Johannesson K; Datta S Sci Total Environ; 2014 Aug; 488-489():570-9. PubMed ID: 24694939 [TBL] [Abstract][Full Text] [Related]
16. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers. Rango T; Vengosh A; Dwyer G; Bianchini G Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878 [TBL] [Abstract][Full Text] [Related]
17. Adapting to PFAS contamination of private drinking water wells near a PFAS production facility in the US Atlantic Coastal Plain of North Carolina. VanDerwerker TJ; Knappe DRU; Genereux DP Water Environ Res; 2024 Aug; 96(8):e11091. PubMed ID: 39072849 [TBL] [Abstract][Full Text] [Related]
18. Private well groundwater quality in West Virginia, USA-2010. Law RK; Murphy MW; Choudhary E Sci Total Environ; 2017 May; 586():559-565. PubMed ID: 28215805 [TBL] [Abstract][Full Text] [Related]
19. Well characteristics influencing arsenic concentrations in ground water. Erickson ML; Barnes RJ Water Res; 2005 Oct; 39(16):4029-39. PubMed ID: 16135378 [TBL] [Abstract][Full Text] [Related]
20. Pollutant sources in an arsenic-affected multilayer aquifer in the Po Plain of Italy: Implications for drinking-water supply. Rotiroti M; McArthur J; Fumagalli L; Stefania GA; Sacchi E; Bonomi T Sci Total Environ; 2017 Feb; 578():502-512. PubMed ID: 27836337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]