These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31078891)

  • 1. Effect of the chemical bond on the electrosorption and desorption of anions during capacitive deionization.
    Sun Z; Li Q; Chai L; Shu Y; Wang Y; Qiu D
    Chemosphere; 2019 Aug; 229():341-348. PubMed ID: 31078891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the electronegativity on the electrosorption selectivity of anions during capacitive deionization.
    Sun Z; Chai L; Liu M; Shu Y; Li Q; Wang Y; Qiu D
    Chemosphere; 2018 Mar; 195():282-290. PubMed ID: 29272797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization.
    Hassanvand A; Chen GQ; Webley PA; Kentish SE
    Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of water treatment by capacitive deionization with redox active porous electrodes.
    He F; Biesheuvel PM; Bazant MZ; Hatton TA
    Water Res; 2018 Apr; 132():282-291. PubMed ID: 29331915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent progress in materials and architectures for capacitive deionization: A comprehensive review.
    Datar SD; Mane R; Jha N
    Water Environ Res; 2022 Mar; 94(3):e10696. PubMed ID: 35289462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics.
    Li G; Cai W; Zhao R; Hao L
    Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode.
    Fan CS; Liou SYH; Hou CH
    Chemosphere; 2017 Oct; 184():924-931. PubMed ID: 28655111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization.
    Huang SY; Fan CS; Hou CH
    J Hazard Mater; 2014 Aug; 278():8-15. PubMed ID: 24937658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective adsorption of phosphate by carboxyl-modified activated carbon electrodes for capacitive deionization.
    Miao L; Deng W; Chen X; Gao M; Chen W; Ao T
    Water Sci Technol; 2021 Oct; 84(7):1757-1773. PubMed ID: 34662311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of titanium carburizing electrodes for capacitive deionization.
    Li W; Lei L; Yun Z; Jiangtao F
    Water Sci Technol; 2017 Aug; 76(3-4):754-760. PubMed ID: 28799922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced capacitive deionization of a low-concentration brackish water with protonated carbon nitride-decorated graphene oxide electrode.
    Yu J; Liu Y; Zhang X; Liu R; Yang Q; Hu S; Song H; Li P; Li A; Zhang S
    Chemosphere; 2022 Apr; 293():133580. PubMed ID: 35026198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the flow efficiency in constant-current capacitive deionization.
    Hawks SA; Knipe JM; Campbell PG; Loeb CK; Hubert MA; Santiago JG; Stadermann M
    Water Res; 2018 Feb; 129():327-336. PubMed ID: 29161663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anchoring chitosan/phytic acid complexes on polypyrrole nanotubes as capacitive deionization electrodes for uranium capture from wastewater.
    Zhao X; Chen D; Shi M; Zhao R
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132491. PubMed ID: 38763240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influences of separators on capacitive deionization systems in the cycle of adsorption and desorption.
    Yao Q; Shi Z; Liu Q; Gu Z; Ning R
    Environ Sci Pollut Res Int; 2018 Feb; 25(4):3313-3319. PubMed ID: 29149445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water desalination using capacitive deionization with microporous carbon electrodes.
    Porada S; Weinstein L; Dash R; van der Wal A; Bryjak M; Gogotsi Y; Biesheuvel PM
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1194-9. PubMed ID: 22329838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced phosphorus electrosorption using Fe, N-co-doped porous electrode via capacitive deionization.
    Chen X; Song X; Chen W; Ao T
    Environ Technol; 2024 Jul; 45(17):3381-3395. PubMed ID: 37191243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification.
    Ma CY; Huang SC; Chou PH; Den W; Hou CH
    Chemosphere; 2016 Mar; 146():113-20. PubMed ID: 26714293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudocapacitive Coating for Effective Capacitive Deionization.
    Li M; Park HG
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2442-2450. PubMed ID: 29272105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Composite Electrodes for Selective Removal of Sulfate by the Capacitive Deionization Process.
    Zuo K; Kim J; Jain A; Wang T; Verduzco R; Long M; Li Q
    Environ Sci Technol; 2018 Aug; 52(16):9486-9494. PubMed ID: 30041515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.