BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31078989)

  • 1. Development of a model (SWNano) to assess the fate and transport of TiO
    Kim KE; Hwang YS; Jang MH; Song JH; Kim HS; Lee DS
    J Hazard Mater; 2019 Aug; 375():290-296. PubMed ID: 31078989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of environmental fate models for engineered nanoparticles--a case study of TiO2 nanoparticles in the Rhine River.
    Praetorius A; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2012 Jun; 46(12):6705-13. PubMed ID: 22502632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Addressing the complexity of water chemistry in environmental fate modeling for engineered nanoparticles.
    Sani-Kast N; Scheringer M; Slomberg D; Labille J; Praetorius A; Ollivier P; Hungerbühler K
    Sci Total Environ; 2015 Dec; 535():150-9. PubMed ID: 25636351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assessment of the fate, behaviour and environmental risk associated with sunscreen TiO₂ nanoparticles in UK field scenarios.
    Johnson AC; Bowes MJ; Crossley A; Jarvie HP; Jurkschat K; Jürgens MD; Lawlor AJ; Park B; Rowland P; Spurgeon D; Svendsen C; Thompson IP; Barnes RJ; Williams RJ; Xu N
    Sci Total Environ; 2011 Jun; 409(13):2503-10. PubMed ID: 21501856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A seasonal observation on the distribution of engineered nanoparticles in municipal wastewater treatment systems exemplified by TiO
    Choi S; Johnston M; Wang GS; Huang CP
    Sci Total Environ; 2018 Jun; 625():1321-1329. PubMed ID: 29996429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.
    Praetorius A; Labille J; Scheringer M; Thill A; Hungerbühler K; Bottero JY
    Environ Sci Technol; 2014 Sep; 48(18):10690-8. PubMed ID: 25127331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vulnerability of drinking water supplies to engineered nanoparticles.
    Troester M; Brauch HJ; Hofmann T
    Water Res; 2016 Jun; 96():255-79. PubMed ID: 27060529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta (Draparnaud, 1805).
    Musee N; Oberholster PJ; Sikhwivhilu L; Botha AM
    Chemosphere; 2010 Nov; 81(10):1196-203. PubMed ID: 20943245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Behaviors of engineered nanoparticles in aquatic environments and impacts on marine phytoplankton].
    Li ML; Jiang YL
    Huan Jing Ke Xue; 2015 Jan; 36(1):365-72. PubMed ID: 25898688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting non-deposition sediment transport in sewer pipes using Random forest.
    Montes C; Kapelan Z; Saldarriaga J
    Water Res; 2021 Feb; 189():116639. PubMed ID: 33227613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems.
    Luo P; Roca A; Tiede K; Privett K; Jiang J; Pinkstone J; Ma G; Veinot J; Boxall A
    J Environ Sci (China); 2018 Feb; 64():62-71. PubMed ID: 29478662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Transport and sources of runoff pollution from urban area with combined sewer system].
    Li LQ; Yin CQ
    Huan Jing Ke Xue; 2009 Feb; 30(2):368-75. PubMed ID: 19402483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate and behavior of ZnO- and Ag-engineered nanoparticles and a bacterial viability assessment in a simulated wastewater treatment plant.
    Musee N; Zvimba JN; Schaefer LM; Nota N; Sikhwivhilu LM; Thwala M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(1):59-66. PubMed ID: 24117084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors.
    Ma C; Huangfu X; He Q; Ma J; Huang R
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33056-33081. PubMed ID: 30267342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach.
    Karpf C; Krebs P
    Water Res; 2011 May; 45(10):3129-36. PubMed ID: 21497364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment.
    Meesters JA; Veltman K; Hendriks AJ; van de Meent D
    Integr Environ Assess Manag; 2013 Jul; 9(3):e15-26. PubMed ID: 23633247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: An overview.
    Minetto D; Volpi Ghirardini A; Libralato G
    Environ Int; 2016; 92-93():189-201. PubMed ID: 27107224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of Heteroaggregation between Citrate-Stabilized Gold Nanoparticles and Hematite Colloids.
    Smith BM; Pike DJ; Kelly MO; Nason JA
    Environ Sci Technol; 2015 Nov; 49(21):12789-97. PubMed ID: 26444131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate assessment of engineered nanoparticles in solids dominated media - Current insights and the way forward.
    Peijnenburg W; Praetorius A; Scott-Fordsmand J; Cornelis G
    Environ Pollut; 2016 Nov; 218():1365-1369. PubMed ID: 26794339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Cd(II) on the stability of humic acid-coated nano-TiO
    Wang L; Lu Y; Yang C; Chen C; Huang W; Dang Z
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23144-23152. PubMed ID: 28828557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.