These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 3107905)

  • 41. [Influence of different prey strains on isolation myxobacteria in saline-alkaline soils of Xinjiang].
    Li B; Xie X; Zhang X; Cai Z; Zhu H
    Wei Sheng Wu Xue Bao; 2013 Apr; 53(4):379-89. PubMed ID: 23858713
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Scanning electron microscopy of fruiting body formation by myxobacteria.
    Grilione PL; Pangborn J
    J Bacteriol; 1975 Dec; 124(3):1558-65. PubMed ID: 811649
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores.
    O'Connor KA; Zusman DR
    J Bacteriol; 1991 Jun; 173(11):3318-33. PubMed ID: 1904430
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Developmental bypass suppression of Myxococcus xanthus csgA mutations.
    Rhie HG; Shimkets LJ
    J Bacteriol; 1989 Jun; 171(6):3268-76. PubMed ID: 2542221
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Investigation of cytochromes P450 in myxobacteria: excavation of cytochromes P450 from the genome of Sorangium cellulosum So ce56.
    Khatri Y; Hannemann F; Perlova O; Müller R; Bernhardt R
    FEBS Lett; 2011 Jun; 585(11):1506-13. PubMed ID: 21521637
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Correlations between the role, sequence conservation, genomic location and severity of phenotype in myxobacterial developmental genes.
    Evans AR; Whitworth DE
    FEMS Microbiol Lett; 2010 Nov; 312(1):40-5. PubMed ID: 20807238
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of deletion of the gene for the development-specific protein S on differentiation in Myxococcus xanthus.
    Komano T; Furuichi T; Teintze M; Inouye M; Inouye S
    J Bacteriol; 1984 Jun; 158(3):1195-7. PubMed ID: 6327634
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development.
    Kroos L; Hartzell P; Stephens K; Kaiser D
    Genes Dev; 1988 Dec; 2(12A):1677-85. PubMed ID: 3145903
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutations that affect production of branched RNA-linked msDNA in Myxococcus xanthus.
    Dhundale A; Furuichi T; Inouye M; Inouye S
    J Bacteriol; 1988 Dec; 170(12):5620-4. PubMed ID: 2461359
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Myxococcus xanthus autocide AMI.
    Varon M; Tietz A; Rosenberg E
    J Bacteriol; 1986 Jul; 167(1):356-61. PubMed ID: 3087961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved methods of isolation and purification of myxobacteria and development of fruiting body formation of two strains.
    Zhang L; Wang H; Fang X; Stackebrandt E; Ding Y
    J Microbiol Methods; 2003 Jul; 54(1):21-7. PubMed ID: 12732418
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Abnormal motility and fruiting behavior of Myxococcus xanthus bacteriophage-resistant strains induced by a clear-plaque mutant of bacteriophage Mx8.
    Ruiz-Vázquez R; Murillo FJ
    J Bacteriol; 1984 Nov; 160(2):818-21. PubMed ID: 6438060
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Myxobacteria: proficient producers of novel natural products with various biological activities--past and future biotechnological aspects with the focus on the genus Sorangium.
    Gerth K; Pradella S; Perlova O; Beyer S; Müller R
    J Biotechnol; 2003 Dec; 106(2-3):233-53. PubMed ID: 14651865
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intercellular signaling is required for developmental gene expression in Myxococcus xanthus.
    Kuspa A; Kroos L; Kaiser D
    Dev Biol; 1986 Sep; 117(1):267-76. PubMed ID: 3017795
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic-energy-budget-driven fruiting-body formation in myxobacteria.
    Hendrata M; Birnir B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061902. PubMed ID: 20866435
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Myxococcus xanthus mutants with temperature-sensitive, stage-specific defects: evidence for independent pathways in development.
    Morrison CE; Zusman DR
    J Bacteriol; 1979 Dec; 140(3):1036-42. PubMed ID: 118153
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of the RNA products of the ops gene of Myxococcus xanthus and mapping of ops and tps RNAs.
    Downard JS
    J Bacteriol; 1987 Apr; 169(4):1522-8. PubMed ID: 2435705
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Low-temperature induction of Myxococcus xanthus developmental gene expression in wild-type and csgA suppressor cells.
    Rhie HG; Shimkets LJ
    J Bacteriol; 1991 Apr; 173(7):2206-11. PubMed ID: 1901052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. fbfB, a gene encoding a putative galactose oxidase, is involved in Stigmatella aurantiaca fruiting body formation.
    Silakowski B; Ehret H; Schairer HU
    J Bacteriol; 1998 Mar; 180(5):1241-7. PubMed ID: 9495764
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of the cell surface in social and adventurous behaviour of myxobacteria.
    Shimkets LJ
    Mol Microbiol; 1989 Sep; 3(9):1295-9. PubMed ID: 2507873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.