BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 31079296)

  • 1. Oral administration of graphene oxide nano-sheets induces oxidative stress, genotoxicity, and behavioral teratogenicity in Drosophila melanogaster.
    Priyadarsini S; Sahoo SK; Sahu S; Mukherjee S; Hota G; Mishra M
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19560-19574. PubMed ID: 31079296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster.
    Anet A; Olakkaran S; Kizhakke Purayil A; Hunasanahally Puttaswamygowda G
    J Hazard Mater; 2019 May; 370():42-53. PubMed ID: 30213494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster.
    Carmona ER; Inostroza-Blancheteau C; Obando V; Rubio L; Marcos R
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Sep; 791():1-11. PubMed ID: 26338537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotoxic and oxidative stress potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster.
    Carmona ER; Inostroza-Blancheteau C; Rubio L; Marcos R
    Toxicol Ind Health; 2016 Dec; 32(12):1987-2001. PubMed ID: 26419260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral Teratogenesis in Drosophila melanogaster.
    Mishra M; Barik BK
    Methods Mol Biol; 2018; 1797():277-298. PubMed ID: 29896698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exposure to boron trioxide nanoparticles and ions cause oxidative stress, DNA damage, and phenotypic alterations in Drosophila melanogaster as an in vivo model.
    Turna Demir F; Demir E
    J Appl Toxicol; 2022 Nov; 42(11):1854-1867. PubMed ID: 35837816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticles as a potential teratogen: a lesson learnt from fruit fly.
    Barik BK; Mishra M
    Nanotoxicology; 2019 Mar; 13(2):258-284. PubMed ID: 30587065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila.
    Carmona ER; Escobar B; Vales G; Marcos R
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Jan; 778():12-21. PubMed ID: 25726144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing genotoxicity of diuron on Drosophila melanogaster by the wing-spot test and the wing imaginal disk comet assay.
    Peraza-Vega RI; Castañeda-Sortibrán AN; Valverde M; Rojas E; Rodríguez-Arnaiz R
    Toxicol Ind Health; 2017 May; 33(5):443-453. PubMed ID: 27777339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and
    Ng CT; Yong LQ; Hande MP; Ong CN; Yu LE; Bay BH; Baeg GH
    Int J Nanomedicine; 2017; 12():1621-1637. PubMed ID: 28280330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster.
    Shukla AK; Pragya P; Chowdhuri DK
    Mutat Res; 2011 Dec; 726(2):222-6. PubMed ID: 22005018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline Comet assay.
    Siddique HR; Chowdhuri DK; Saxena DK; Dhawan A
    Mutagenesis; 2005 Jul; 20(4):285-90. PubMed ID: 15899934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genotoxicity modulation by cadmium treatment: studies in the Drosophila wing spot test.
    Rizki M; Kossatz E; Creus A; Marcos R
    Environ Mol Mutagen; 2004; 43(3):196-203. PubMed ID: 15065207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genotoxic effects of two nickel-compounds in somatic cells of Drosophila melanogaster.
    Carmona ER; Creus A; Marcos R
    Mutat Res; 2011 Jan; 718(1-2):33-7. PubMed ID: 21073980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model.
    Alaraby M; Annangi B; Hernández A; Creus A; Marcos R
    J Hazard Mater; 2015 Oct; 296():166-174. PubMed ID: 25917694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo genotoxicity assesment of silver nanoparticles of different sizes by the Somatic Mutation and Recombination Test (SMART) on Drosophila.
    Ávalos A; Haza AI; Drosopoulou E; Mavragani-Tsipidou P; Morales P
    Food Chem Toxicol; 2015 Nov; 85():114-9. PubMed ID: 26169716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms and biological impacts of graphene and multi-walled carbon nanotubes on Drosophila melanogaster: Oxidative stress, genotoxic damage, phenotypic variations, locomotor behavior, parasitoid resistance, and cellular immune response.
    Demir E
    J Appl Toxicol; 2022 Mar; 42(3):450-474. PubMed ID: 34486762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary L-arginine accelerates pupation and promotes high protein levels but induces oxidative stress and reduces fecundity and life span in Drosophila melanogaster.
    Bayliak MM; Lylyk MP; Maniukh OV; Storey JM; Storey KB; Lushchak VI
    J Comp Physiol B; 2018 Jan; 188(1):37-55. PubMed ID: 28668996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of Teratogenic and Genotoxic Effects on Model Organism Drosophila melanogaster.
    Naik S; Mishra M
    Methods Mol Biol; 2024; 2753():317-330. PubMed ID: 38285347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells.
    Wang A; Pu K; Dong B; Liu Y; Zhang L; Zhang Z; Duan W; Zhu Y
    J Appl Toxicol; 2013 Oct; 33(10):1156-64. PubMed ID: 23775274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.