These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
273 related articles for article (PubMed ID: 31079301)
1. Resuspension of settled atmospheric particulate matter on plant leaves determined by wind and leaf surface characteristics. Zheng G; Li P Environ Sci Pollut Res Int; 2019 Jul; 26(19):19606-19614. PubMed ID: 31079301 [TBL] [Abstract][Full Text] [Related]
2. Potential of Thirteen Urban Greening Plants to Capture Particulate Matter on Leaf Surfaces across Three Levels of Ambient Atmospheric Pollution. Li Y; Wang S; Chen Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30708968 [TBL] [Abstract][Full Text] [Related]
3. [Retention and resuspension of atmospheric particles with two common urban greening trees]. Qiao GH; Chen JW; Liu XY; Tan LS; Zheng GL; Li P Ying Yong Sheng Tai Xue Bao; 2017 Jan; 28(1):266-272. PubMed ID: 29749211 [TBL] [Abstract][Full Text] [Related]
4. Comparing i-Tree Eco Estimates of Particulate Matter Deposition with Leaf and Canopy Measurements in an Urban Mediterranean Holm Oak Forest. Pace R; Guidolotti G; Baldacchini C; Pallozzi E; Grote R; Nowak DJ; Calfapietra C Environ Sci Technol; 2021 May; 55(10):6613-6622. PubMed ID: 33908766 [TBL] [Abstract][Full Text] [Related]
5. The relationship between particulate matter retention capacity and leaf surface micromorphology of ten tree species in Hangzhou, China. Li X; Zhang T; Sun F; Song X; Zhang Y; Huang F; Yuan C; Yu H; Zhang G; Qi F; Shao F Sci Total Environ; 2021 Jun; 771():144812. PubMed ID: 33736168 [TBL] [Abstract][Full Text] [Related]
6. Analysis of the influencing factors of atmospheric particulate matter accumulation on coniferous species: measurement methods, pollution level, and leaf traits. Zhang Z; Gong J; Li Y; Zhang W; Zhang T; Meng H; Liu X Environ Sci Pollut Res Int; 2022 Sep; 29(41):62299-62311. PubMed ID: 35397023 [TBL] [Abstract][Full Text] [Related]
7. Species-specific efficiency in PM Gaglio M; Pace R; Muresan AN; Grote R; Castaldelli G; Calfapietra C; Fano EA Sci Total Environ; 2022 Oct; 844():157131. PubMed ID: 35798105 [TBL] [Abstract][Full Text] [Related]
8. Immobilized atmospheric particulate matter on leaves of 96 urban plant species. Muhammad S; Wuyts K; Samson R Environ Sci Pollut Res Int; 2020 Oct; 27(29):36920-36938. PubMed ID: 32572747 [TBL] [Abstract][Full Text] [Related]
9. Quantification of the traffic-generated particulate matter capture by plant species in a living wall and evaluation of the important leaf characteristics. Weerakkody U; Dover JW; Mitchell P; Reiling K Sci Total Environ; 2018 Sep; 635():1012-1024. PubMed ID: 29710557 [TBL] [Abstract][Full Text] [Related]
10. Particulate matter resuspension from simulated urban green floors using a wind tunnel-mounted closed chamber. Seo I; Park CR; Yoo G PeerJ; 2023; 11():e14674. PubMed ID: 36785709 [TBL] [Abstract][Full Text] [Related]
11. A dynamic processes study of PM retention by trees under different wind conditions. Xie C; Kan L; Guo J; Jin S; Li Z; Chen D; Li X; Che S Environ Pollut; 2018 Feb; 233():315-322. PubMed ID: 29096304 [TBL] [Abstract][Full Text] [Related]
12. Capacity of six shrub species to retain atmospheric particulates with different diameters. Sun X; Li H; Guo X; Sun Y; Li S Environ Sci Pollut Res Int; 2018 Jan; 25(3):2643-2650. PubMed ID: 29134522 [TBL] [Abstract][Full Text] [Related]
13. Influence of leaf morphological characteristics on the dynamic changes of particulate matter retention and grain size distributions. Yan Q; Xu L; Duan Y; Pan L; Wu Z; Chen X Environ Technol; 2024 Jan; 45(1):108-119. PubMed ID: 35815364 [No Abstract] [Full Text] [Related]
14. Differences in particulate matter retention and leaf microstructures of 10 plants in different urban environments in Lanzhou City. Huang R; Tian Q; Zhang Y; Chen Z; Wu Y; Li Z; Wen Z Environ Sci Pollut Res Int; 2023 Oct; 30(47):103652-103673. PubMed ID: 37688697 [TBL] [Abstract][Full Text] [Related]
15. How Does the Amount and Composition of PM Deposited on Platanus acerifolia Leaves Change Across Different Cities in Europe? Baldacchini C; Castanheiro A; Maghakyan N; Sgrigna G; Verhelst J; Alonso R; Amorim JH; Bellan P; Bojović DĐ; Breuste J; Bühler O; Cântar IC; Cariñanos P; Carriero G; Churkina G; Dinca L; Esposito R; Gawroński SW; Kern M; Le Thiec D; Moretti M; Ningal T; Rantzoudi EC; Sinjur I; Stojanova B; Aničić Urošević M; Velikova V; Živojinović I; Sahakyan L; Calfapietra C; Samson R Environ Sci Technol; 2017 Feb; 51(3):1147-1156. PubMed ID: 28060487 [TBL] [Abstract][Full Text] [Related]
16. Particulate matter accumulation capacity of plants in Hanoi, Vietnam. Mariën B; Mariën J; Nguyen XH; Nguyen TC; Nguyen VS; Samson R Environ Pollut; 2019 Oct; 253():1079-1088. PubMed ID: 31434185 [TBL] [Abstract][Full Text] [Related]
17. Coagulation effect of atmospheric submicron particles on plant leaves: Key functional characteristics and a comparison with dry deposition. Lyu J; Chen D; Zhang X; Yan J; Shen G; Yin S Sci Total Environ; 2023 Apr; 868():161582. PubMed ID: 36640873 [TBL] [Abstract][Full Text] [Related]
18. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Shao F; Wang L; Sun F; Li G; Yu L; Wang Y; Zeng X; Yan H; Dong L; Bao Z Sci Total Environ; 2019 Feb; 652():939-951. PubMed ID: 30380499 [TBL] [Abstract][Full Text] [Related]
19. [Impacts of Leaf Surface Micromorphology Variation on the Ability to Capture Particulate Matter]. Wei WJ; Wang B; Niu X Huan Jing Ke Xue; 2020 Jul; 41(7):3136-3147. PubMed ID: 32608886 [TBL] [Abstract][Full Text] [Related]
20. Exploring the interplay between particulate matter capture, wash-off, and leaf traits in green wall species. Tomson M; Kumar P; Abhijith KV; Watts JF Sci Total Environ; 2024 Apr; 921():170950. PubMed ID: 38360301 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]