BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

722 related articles for article (PubMed ID: 31079595)

  • 1. Optimisation of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 : single-guide RNA (sgRNA) delivery system in a goat model.
    Huang Y; Ding Y; Liu Y; Zhou S; Ding Q; Yan H; Ma B; Zhao X; Wang X; Chen Y
    Reprod Fertil Dev; 2019 Aug; 31(9):1533-1537. PubMed ID: 31079595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation.
    Tanihara F; Hirata M; Nguyen NT; Le QA; Hirano T; Takemoto T; Nakai M; Fuchimoto DI; Otoi T
    Anim Sci J; 2019 Jan; 90(1):55-61. PubMed ID: 30368976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of mouse and human preimplantation development following POU5F1 CRISPR/Cas9 targeting reveals interspecies differences.
    Stamatiadis P; Boel A; Cosemans G; Popovic M; Bekaert B; Guggilla R; Tang M; De Sutter P; Van Nieuwerburgh F; Menten B; Stoop D; Chuva de Sousa Lopes SM; Coucke P; Heindryckx B
    Hum Reprod; 2021 Apr; 36(5):1242-1252. PubMed ID: 33609360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9.
    Zhou W; Wan Y; Guo R; Deng M; Deng K; Wang Z; Zhang Y; Wang F
    PLoS One; 2017; 12(10):e0186056. PubMed ID: 29016691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality.
    Zhou S; Kalds P; Luo Q; Sun K; Zhao X; Gao Y; Cai B; Huang S; Kou Q; Petersen B; Chen Y; Ma B; Wang X
    BMC Genomics; 2022 May; 23(1):348. PubMed ID: 35524183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination.
    Peng H; Le C; Wu J; Li XF; Zhang H; Le XC
    ACS Nano; 2020 Mar; 14(3):2817-2826. PubMed ID: 32048826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CRISPR-Cas9-Guided Genome Engineering in C. elegans.
    Kim HM; Colaiácovo MP
    Curr Protoc Mol Biol; 2016 Jul; 115():31.7.1-31.7.18. PubMed ID: 27366893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient generation of goats with defined point mutation (I397V) in GDF9 through CRISPR/Cas9.
    Niu Y; Zhao X; Zhou J; Li Y; Huang Y; Cai B; Liu Y; Ding Q; Zhou S; Zhao J; Zhou G; Ma B; Huang X; Wang X; Chen Y
    Reprod Fertil Dev; 2018 Jan; 30(2):307-312. PubMed ID: 28692815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit.
    Wang Z; Wang S; Li D; Zhang Q; Li L; Zhong C; Liu Y; Huang H
    Plant Biotechnol J; 2018 Aug; 16(8):1424-1433. PubMed ID: 29331077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 12. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Cashmere Goats Carrying an
    Hao F; Yan W; Li X; Wang H; Wang Y; Hu X; Liu X; Liang H; Liu D
    Int J Biol Sci; 2018; 14(4):427-436. PubMed ID: 29725264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.
    Tang YD; Guo JC; Wang TY; Zhao K; Liu JT; Gao JC; Tian ZJ; An TQ; Cai XH
    FASEB J; 2018 Aug; 32(8):4293-4301. PubMed ID: 29509513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of CRISPR/Cas9 Nuclease in Amphioxus Genome Editing.
    Su L; Shi C; Huang X; Wang Y; Li G
    Genes (Basel); 2020 Nov; 11(11):. PubMed ID: 33167309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cas9HF1 enhanced specificity in Ustilago maydis.
    Zuo W; Depotter JR; Doehlemann G
    Fungal Biol; 2020; 124(3-4):228-234. PubMed ID: 32220383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somatic Liver Knockout (SLiK): A Quick and Efficient Way to Generate Liver-Specific Knockout Mice Using Multiplex CRISPR/Cas9 Gene Editing.
    Johnson CG; Chen T; Furey N; Hemmingsen MG; Bissig KD
    Curr Protoc Mol Biol; 2020 Mar; 130(1):e117. PubMed ID: 32150344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote.
    Raveux A; Vandormael-Pournin S; Cohen-Tannoudji M
    Sci Rep; 2017 Feb; 7():42661. PubMed ID: 28209967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.