These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 31079755)
1. Thermal degradation behavior of pectin in citrus wastes with density functional theory study. Wu J; Liu C; Xu X; Li Q; Li X Waste Manag; 2019 Apr; 89():408-417. PubMed ID: 31079755 [TBL] [Abstract][Full Text] [Related]
2. Thermal decomposition mechanism of O-acetyl-4-O-methylglucurono-xylan. Wu J; Liu C; Li Q J Mol Model; 2019 Jul; 25(8):234. PubMed ID: 31332523 [TBL] [Abstract][Full Text] [Related]
3. Comparison of cell wall metabolism in the pulp of three cultivars of 'Nanfeng' tangerine differing in mastication trait. Lei Y; Liu YZ; Gu QQ; Yang XY; Deng XX; Chen JY J Sci Food Agric; 2012 Feb; 92(3):496-502. PubMed ID: 21732384 [TBL] [Abstract][Full Text] [Related]
4. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Chen X; Li S; Liu Z; Chen Y; Yang H; Wang X; Che Q; Chen W; Chen H Bioresour Technol; 2019 Sep; 287():121493. PubMed ID: 31112930 [TBL] [Abstract][Full Text] [Related]
5. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over Cobalt modified ZSM-5 catalyst by thermogravimetric analysis. Xiang Z; Liang J; Morgan HM; Liu Y; Mao H; Bu Q Bioresour Technol; 2018 Jan; 247():804-811. PubMed ID: 30060416 [TBL] [Abstract][Full Text] [Related]
6. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model. Chen T; Zhang J; Wu J Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic investigation of CO generation by pyrolysis of furan and its main derivatives. Sun B; Liang H; Che D; Liu H; Guo S RSC Adv; 2019 Mar; 9(16):9099-9105. PubMed ID: 35517696 [TBL] [Abstract][Full Text] [Related]
8. Nonenzymatic degradation of citrus pectin and pectate during prolonged heating: effects of pH, temperature, and degree of methyl esterification. Diaz JV; Anthon GE; Barrett DM J Agric Food Chem; 2007 Jun; 55(13):5131-6. PubMed ID: 17550266 [TBL] [Abstract][Full Text] [Related]
9. Citrus Oil Emulsions Stabilized by Citrus Pectin: The Influence Mechanism of Citrus Variety and Acid Treatment. Zhao S; Gao W; Tian G; Zhao C; DiMarco-Crook C; Fan B; Li C; Xiao H; Lian Y; Zheng J J Agric Food Chem; 2018 Dec; 66(49):12978-12988. PubMed ID: 30462506 [TBL] [Abstract][Full Text] [Related]
10. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Chen Z; Hu M; Zhu X; Guo D; Liu S; Hu Z; Xiao B; Wang J; Laghari M Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101 [TBL] [Abstract][Full Text] [Related]
11. Thermal decomposition and isomerization of furfural and 2-pyrone: a theoretical kinetic study. Al-Hammadi S; da Silva G Phys Chem Chem Phys; 2021 Jan; 23(3):2046-2054. PubMed ID: 33470258 [TBL] [Abstract][Full Text] [Related]
12. Manothermosonication (MTS) treatment by a continuous-flow system: Effects on the degradation kinetics and microstructural characteristics of citrus pectin. Wang W; Chen W; Kahraman O; Chantapakul T; Ding T; Liu D; Feng H Ultrason Sonochem; 2020 May; 63():104973. PubMed ID: 31986328 [TBL] [Abstract][Full Text] [Related]
13. Application of engineered yeast strain fermentation for oligogalacturonides production from pectin-rich waste biomass. Yang G; Tan H; Li S; Zhang M; Che J; Li K; Chen W; Yin H Bioresour Technol; 2020 Mar; 300():122645. PubMed ID: 31887580 [TBL] [Abstract][Full Text] [Related]
14. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal. Wu Z; Wang S; Zhao J; Chen L; Meng H Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297 [TBL] [Abstract][Full Text] [Related]
15. The effect of citrus pectin on the absorption of nutrients in the small intestine. Sandberg AS; Ahderinne R; Andersson H; Hallgren B; Hultén L Hum Nutr Clin Nutr; 1983 May; 37(3):171-83. PubMed ID: 6307932 [TBL] [Abstract][Full Text] [Related]
16. Citrus pectin: characterization and inhibitory effect on fibroblast growth factor-receptor interaction. Liu Y; Ahmad H; Luo Y; Gardiner DT; Gunasekera RS; McKeehan WL; Patil BS J Agric Food Chem; 2001 Jun; 49(6):3051-7. PubMed ID: 11410008 [TBL] [Abstract][Full Text] [Related]
17. Impact of pectin type on the storage stability of black currant (Ribes nigrum L.) anthocyanins in pectic model solutions. Buchweitz M; Speth M; Kammerer DR; Carle R Food Chem; 2013 Aug; 139(1-4):1168-78. PubMed ID: 23561223 [TBL] [Abstract][Full Text] [Related]
18. Production of biofuels, limonene and pectin from citrus wastes. Pourbafrani M; Forgács G; Horváth IS; Niklasson C; Taherzadeh MJ Bioresour Technol; 2010 Jun; 101(11):4246-50. PubMed ID: 20149643 [TBL] [Abstract][Full Text] [Related]
19. Thermal decomposition of castor oil, corn starch, soy protein, lignin, xylan, and cellulose during fast pyrolysis. Qiao Y; Wang B; Ji Y; Xu F; Zong P; Zhang J; Tian Y Bioresour Technol; 2019 Apr; 278():287-295. PubMed ID: 30708332 [TBL] [Abstract][Full Text] [Related]
20. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Wang S; Guo X; Liang T; Zhou Y; Luo Z Bioresour Technol; 2012 Jan; 104():722-8. PubMed ID: 22100230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]