These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31079755)

  • 21. Recent advances in the biological valorization of citrus peel waste into fuels and chemicals.
    Jeong D; Park H; Jang BK; Ju Y; Shin MH; Oh EJ; Lee EJ; Kim SR
    Bioresour Technol; 2021 Mar; 323():124603. PubMed ID: 33406467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrolysis and gasification of typical components in wastes with macro-TGA.
    Meng A; Chen S; Long Y; Zhou H; Zhang Y; Li Q
    Waste Manag; 2015 Dec; 46():247-56. PubMed ID: 26318422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physicochemical and macromolecule properties of RG-I enriched pectin from citrus wastes by manosonication extraction.
    Hu W; Chen S; Wu D; Zhu K; Ye X
    Int J Biol Macromol; 2021 Apr; 176():332-341. PubMed ID: 33556397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of high-intensity ultrasound on the physicochemical properties and nanostructure of citrus pectin.
    Zhang L; Ye X; Xue SJ; Zhang X; Liu D; Meng R; Chen S
    J Sci Food Agric; 2013 Jun; 93(8):2028-36. PubMed ID: 23580459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acid-catalyzed transformation of orange waste into furfural: the effect of pectin degree of esterification.
    Rivera-Cedillo EE; González-Chávez MM; Handy BE; Quintana-Olivera MF; López-Mercado J; Cárdenas-Galindo MG
    Bioresour Bioprocess; 2024 May; 11(1):52. PubMed ID: 38767776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles.
    Wang S; Ru B; Lin H; Luo Z
    Bioresour Technol; 2013 Sep; 143():378-83. PubMed ID: 23819973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comprehensive kinetics study of coconut shell waste pyrolysis.
    Ali I; Bahaitham H; Naebulharam R
    Bioresour Technol; 2017 Jul; 235():1-11. PubMed ID: 28351726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzymatic degradation studies of pectin and cellulose from red beets.
    Dongowski G
    Nahrung; 2001 Oct; 45(5):324-31. PubMed ID: 11715343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women.
    Brouns F; Theuwissen E; Adam A; Bell M; Berger A; Mensink RP
    Eur J Clin Nutr; 2012 May; 66(5):591-9. PubMed ID: 22190137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum chemical study of the thermal decomposition of o-quinone methide (6-methylene-2,4-cyclohexadien-1-one).
    Silva Gd; Bozzelli JW
    J Phys Chem A; 2007 Aug; 111(32):7987-94. PubMed ID: 17645323
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J; Chen T; Wu J; Wu J
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermochemistry and kinetic analysis for the conversion of furfural to valuable added products.
    Pino N; López D; Espinal JF
    J Mol Model; 2019 Jan; 25(1):26. PubMed ID: 30612236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues.
    Yuan R; Yu S; Shen Y
    Waste Manag; 2019 Mar; 87():86-96. PubMed ID: 31109588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A method for gel grade determination and application evaluation of two citrus pectins.
    Zhang M; Bai B; Cheng H; Ye X; Chang J; Chen S; Chen J
    Int J Biol Macromol; 2023 Oct; 250():126129. PubMed ID: 37541470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physicochemical and powder characteristics of various citrus pectins and their application for oral pharmaceutical tablets.
    Chomto P; Nunthanid J
    Carbohydr Polym; 2017 Oct; 174():25-31. PubMed ID: 28821065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chemical modification of citrus pectin: Structural, physical and rheologial implications.
    Fracasso AF; Perussello CA; Carpiné D; Petkowicz CLO; Haminiuk CWI
    Int J Biol Macromol; 2018 Apr; 109():784-792. PubMed ID: 29133098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Citrus pectin and oligofructose improve folate status and lower serum total homocysteine in rats.
    Thoma C; Green TJ; Ferguson LR
    Int J Vitam Nutr Res; 2003 Nov; 73(6):403-9. PubMed ID: 14743543
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the thermal degradation mechanisms of polyethylene terephthalate dimer using DFT method.
    Huang J; Meng H; Luo X; Mu X; Xu W; Jin L; Lai B
    Chemosphere; 2022 Mar; 291(Pt 2):133112. PubMed ID: 34856241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anti-diabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway.
    Liu Y; Dong M; Yang Z; Pan S
    Int J Biol Macromol; 2016 Aug; 89():484-8. PubMed ID: 27164497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.