BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31080119)

  • 1. Structural Mechanism of the Arrestin-3/JNK3 Interaction.
    Park JY; Qu CX; Li RR; Yang F; Yu X; Tian ZM; Shen YM; Cai BY; Yun Y; Sun JP; Chung KY
    Structure; 2019 Jul; 27(7):1162-1170.e3. PubMed ID: 31080119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A scanning peptide array approach uncovers association sites within the JNK/beta arrestin signalling complex.
    Li X; MacLeod R; Dunlop AJ; Edwards HV; Advant N; Gibson LC; Devine NM; Brown KM; Adams DR; Houslay MD; Baillie GS
    FEBS Lett; 2009 Oct; 583(20):3310-6. PubMed ID: 19782076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The beta-arrestin-2 scaffold protein promotes c-Jun N-terminal kinase-3 activation by binding to its nonconserved N terminus.
    Guo C; Whitmarsh AJ
    J Biol Chem; 2008 Jun; 283(23):15903-11. PubMed ID: 18408005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3.
    McDonald PH; Chow CW; Miller WE; Laporte SA; Field ME; Lin FT; Davis RJ; Lefkowitz RJ
    Science; 2000 Nov; 290(5496):1574-7. PubMed ID: 11090355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silent scaffolds: inhibition OF c-Jun N-terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant.
    Breitman M; Kook S; Gimenez LE; Lizama BN; Palazzo MC; Gurevich EV; Gurevich VV
    J Biol Chem; 2012 Jun; 287(23):19653-64. PubMed ID: 22523077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein beta-arrestin 2.
    Willoughby EA; Collins MK
    J Biol Chem; 2005 Jul; 280(27):25651-8. PubMed ID: 15888437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of arrestin-3 activation and signaling.
    Chen Q; Perry NA; Vishnivetskiy SA; Berndt S; Gilbert NC; Zhuo Y; Singh PK; Tholen J; Ohi MD; Gurevich EV; Brautigam CA; Klug CS; Gurevich VV; Iverson TM
    Nat Commun; 2017 Nov; 8(1):1427. PubMed ID: 29127291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains.
    Zhan X; Perez A; Gimenez LE; Vishnivetskiy SA; Gurevich VV
    Cell Signal; 2014 Apr; 26(4):766-76. PubMed ID: 24412749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of arrestin-3-specific residues necessary for JNK3 kinase activation.
    Seo J; Tsakem EL; Breitman M; Gurevich VV
    J Biol Chem; 2011 Aug; 286(32):27894-901. PubMed ID: 21715332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffolding mechanism of arrestin-2 in the cRaf/MEK1/ERK signaling cascade.
    Qu C; Park JY; Yun MW; He QT; Yang F; Kim K; Ham D; Li RR; Iverson TM; Gurevich VV; Sun JP; Chung KY
    Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34507982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a hyperphosphorylated variant of G protein-coupled receptor kinase 5 expressed in E. coli.
    Beyett TS; Chen Q; Labudde EJ; Krampen J; Sharma PV; Tesmer JJG
    Protein Expr Purif; 2020 Apr; 168():105547. PubMed ID: 31786308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites.
    Song X; Gurevich EV; Gurevich VV
    J Neurochem; 2007 Nov; 103(3):1053-62. PubMed ID: 17680991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a motif in the carboxyl terminus of beta -arrestin2 responsible for activation of JNK3.
    Miller WE; McDonald PH; Cai SF; Field ME; Davis RJ; Lefkowitz RJ
    J Biol Chem; 2001 Jul; 276(30):27770-7. PubMed ID: 11356842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrestin-dependent activation of JNK family kinases.
    Zhan X; Kook S; Gurevich EV; Gurevich VV
    Handb Exp Pharmacol; 2014; 219():259-80. PubMed ID: 24292834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational differences between arrestin2 and pre-activated mutants as revealed by hydrogen exchange mass spectrometry.
    Carter JM; Gurevich VV; Prossnitz ER; Engen JR
    J Mol Biol; 2005 Aug; 351(4):865-78. PubMed ID: 16045931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How does arrestin assemble MAPKs into a signaling complex?
    Song X; Coffa S; Fu H; Gurevich VV
    J Biol Chem; 2009 Jan; 284(1):685-695. PubMed ID: 19001375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaffolding of Mitogen-Activated Protein Kinase Signaling by β-Arrestins.
    Kim K; Han Y; Duan L; Chung KY
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituting c-Jun N-terminal kinase-3 (JNK3) ATP-binding site amino acid residues with their p38 counterparts affects binding of JNK- and p38-selective inhibitors.
    Fricker M; Lograsso P; Ellis S; Wilkie N; Hunt P; Pollack SJ
    Arch Biochem Biophys; 2005 Jun; 438(2):195-205. PubMed ID: 15907786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases.
    Zhan X; Kaoud TS; Kook S; Dalby KN; Gurevich VV
    J Biol Chem; 2013 Oct; 288(40):28535-47. PubMed ID: 23960075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Many faces of the GPCR-arrestin interaction.
    Kim K; Chung KY
    Arch Pharm Res; 2020 Sep; 43(9):890-899. PubMed ID: 32803684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.