These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31080210)

  • 1. Comparison of q-Space Reconstruction Methods for Undersampled Diffusion Spectrum Imaging Data.
    Varela-Mattatall GE; Koch A; Stirnberg R; Chabert S; Uribe S; Tejos C; Stöcker T; Irarrazaval P
    Magn Reson Med Sci; 2020 May; 19(2):108-118. PubMed ID: 31080210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MAPL1: q-space reconstruction using
    Varela-Mattatall G; Castillo-Passi C; Koch A; Mura J; Stirnberg R; Uribe S; Tejos C; Stöcker T; Irarrazaval P
    Magn Reson Med; 2020 Oct; 84(4):2219-2230. PubMed ID: 32270542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-shell diffusion signal recovery from sparse measurements.
    Rathi Y; Michailovich O; Laun F; Setsompop K; Grant PE; Westin CF
    Med Image Anal; 2014 Oct; 18(7):1143-56. PubMed ID: 25047866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized diffusion spectrum magnetic resonance imaging (GDSI) for model-free reconstruction of the ensemble average propagator.
    Tian Q; Yang G; Leuze C; Rokem A; Edlow BL; McNab JA
    Neuroimage; 2019 Apr; 189():497-515. PubMed ID: 30684636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploiting structural redundancy in q-space for improved EAP reconstruction from highly undersampled (k, q)-space in DMRI.
    Sun J; Entezari A; Vemuri BC
    Med Image Anal; 2019 May; 54():122-137. PubMed ID: 30903964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of basis functions and q-space sampling schemes for robust compressed sensing reconstruction accelerating diffusion spectrum imaging.
    Tobisch A; Schultz T; Stirnberg R; Varela-Mattatall G; Knutsson H; Irarrázaval P; Stöcker T
    NMR Biomed; 2019 Mar; 32(3):e4055. PubMed ID: 30637831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Variable Density and Data-Driven K-Space Undersampling for Compressed Sensing Magnetic Resonance Imaging.
    Zijlstra F; Viergever MA; Seevinck PR
    Invest Radiol; 2016 Jun; 51(6):410-9. PubMed ID: 26674209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-fidelity approximation of grid- and shell-based sampling schemes from undersampled DSI using compressed sensing: Post mortem validation.
    Jones R; Maffei C; Augustinack J; Fischl B; Wang H; Bilgic B; Yendiki A
    Neuroimage; 2021 Dec; 244():118621. PubMed ID: 34587516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bootstrap analysis of diffusion tensor and mean apparent propagator parameters derived from multiband diffusion MRI.
    Bernstein AS; Chen NK; Trouard TP
    Magn Reson Med; 2019 Nov; 82(5):1796-1803. PubMed ID: 31155758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating diffusion propagator and its moments using directional radial basis functions.
    Ning L; Westin CF; Rathi Y
    IEEE Trans Med Imaging; 2015 Oct; 34(10):2058-78. PubMed ID: 25838518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A geometric framework for ensemble average propagator reconstruction from diffusion MRI.
    Vemuri BC; Sun J; Banerjee M; Pan Z; Turner SM; Fuller DD; Forder JR; Entezari A
    Med Image Anal; 2019 Oct; 57():89-105. PubMed ID: 31295681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic determination of the regularization weighting for wavelet-based compressed sensing MRI reconstructions.
    Varela-Mattatall G; Baron CA; Menon RS
    Magn Reson Med; 2021 Sep; 86(3):1403-1419. PubMed ID: 33963779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure.
    Özarslan E; Koay CG; Shepherd TM; Komlosh ME; İrfanoğlu MO; Pierpaoli C; Basser PJ
    Neuroimage; 2013 Sep; 78():16-32. PubMed ID: 23587694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved compressed sensing and super-resolution of cardiac diffusion MRI with structure-guided total variation.
    Teh I; McClymont D; Carruth E; Omens J; McCulloch A; Schneider JE
    Magn Reson Med; 2020 Oct; 84(4):1868-1880. PubMed ID: 32125040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scan time reduction in ²³Na-Magnetic Resonance Imaging using the chemical shift imaging sequence: Evaluation of an iterative reconstruction method.
    Weingärtner S; Wetterling F; Konstandin S; Fatar M; Neumaier-Probst E; Schad LR
    Z Med Phys; 2015 Sep; 25(3):275-86. PubMed ID: 25270979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jointly estimating parametric maps of multiple diffusion models from undersampled q-space data: A comparison of three deep learning approaches.
    HashemizadehKolowri S; Chen RR; Adluru G; DiBella EVR
    Magn Reson Med; 2022 Jun; 87(6):2957-2971. PubMed ID: 35081261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of sampling strategies and sparsifying transforms to improve compressed sensing diffusion spectrum imaging.
    Paquette M; Merlet S; Gilbert G; Deriche R; Descoteaux M
    Magn Reson Med; 2015 Jan; 73(1):401-16. PubMed ID: 24478106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating cardiac diffusion tensor imaging combining local low-rank and 3D TV constraint.
    Huang J; Wang L; Chu C; Liu W; Zhu Y
    MAGMA; 2019 Aug; 32(4):407-422. PubMed ID: 30903326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multichannel compressed sensing MR image reconstruction using statistically optimized nonlinear diffusion.
    Joy A; Paul JS
    Magn Reson Med; 2017 Aug; 78(2):754-762. PubMed ID: 28593635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac diffusion tensor imaging based on compressed sensing using joint sparsity and low-rank approximation.
    Huang J; Wang L; Chu C; Zhang Y; Liu W; Zhu Y
    Technol Health Care; 2016 Apr; 24 Suppl 2():S593-9. PubMed ID: 27163322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.