These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3108029)

  • 1. The amino acid sequence of the aliphatic amidase from Pseudomonas aeruginosa.
    Ambler RP; Auffret AD; Clarke PH
    FEBS Lett; 1987 May; 215(2):285-90. PubMed ID: 3108029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and primary structure of the wide-spectrum amidase from Brevibacterium sp. R312: high homology to the amiE product from Pseudomonas aeruginosa.
    Soubrier F; Lévy-Schil S; Mayaux JF; Pétré D; Arnaud A; Crouzet J
    Gene; 1992 Jul; 116(1):99-104. PubMed ID: 1628849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of an aliphatic amidase in Helicobacter pylori.
    Skouloubris S; Labigne A; De Reuse H
    Mol Microbiol; 1997 Sep; 25(5):989-98. PubMed ID: 9364923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis of altered enzyme specificities in a family of mutant amidases from Pseudomonas aeruginosa.
    Paterson A; Clarke PH
    J Gen Microbiol; 1979 Sep; 114(1):75-85. PubMed ID: 118234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive control of Pseudomonas aeruginosa amidase synthesis is mediated by a transcription anti-termination mechanism.
    Drew R; Lowe N
    J Gen Microbiol; 1989 Apr; 135(4):817-23. PubMed ID: 2513374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitutions of Thr-103-Ile and Trp-138-Gly in amidase from Pseudomonas aeruginosa are responsible for altered kinetic properties and enzyme instability.
    Karmali A; Pacheco R; Tata R; Brown P
    Mol Biotechnol; 2001 Mar; 17(3):201-12. PubMed ID: 11434308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide sequence of the aliphatic amidase regulator gene (amiR) of Pseudomonas aeruginosa.
    Lowe N; Rice PM; Drew RE
    FEBS Lett; 1989 Mar; 246(1-2):39-43. PubMed ID: 2495988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel R-stereoselective amidase from Pseudomonas sp. MCI3434 acting on piperazine-2-tert-butylcarboxamide.
    Komeda H; Harada H; Washika S; Sakamoto T; Ueda M; Asano Y
    Eur J Biochem; 2004 Apr; 271(8):1580-90. PubMed ID: 15066183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and DNA sequence of amiC, a new gene regulating expression of the Pseudomonas aeruginosa aliphatic amidase, and purification of the amiC product.
    Wilson S; Drew R
    J Bacteriol; 1991 Aug; 173(16):4914-21. PubMed ID: 1907262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementation analysis of the aliphatic amidase genes of Pseudomonas aeruginosa.
    Drew R
    J Gen Microbiol; 1984 Dec; 130(12):3101-11. PubMed ID: 6440948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alignment of cloned amiE gene of Pseudomonas aeruginosa with the N-terminal sequence of amidase.
    Clarke PH; Drew RE; Turberville C; Brammar WJ; Ambler RP; Auffret AD
    Biosci Rep; 1981 Apr; 1(4):299-307. PubMed ID: 6271281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization, diffraction data collection and preliminary crystallographic analysis of hexagonal crystals of Pseudomonas aeruginosa amidase.
    Andrade J; Karmali A; Carrondo MA; Frazão C
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Mar; 63(Pt 3):214-6. PubMed ID: 17329817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas aeruginosa aliphatic amidase is related to the nitrilase/cyanide hydratase enzyme family and Cys166 is predicted to be the active site nucleophile of the catalytic mechanism.
    Novo C; Tata R; Clemente A; Brown PR
    FEBS Lett; 1995 Jul; 367(3):275-9. PubMed ID: 7607322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity.
    Novo C; Farnaud S; Tata R; Clemente A; Brown PR
    Biochem J; 2002 Aug; 365(Pt 3):731-8. PubMed ID: 11955282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The subunit structure of the aliphatic amidase from Pseudomonas aeruginosa.
    Brown PR; Smyth MJ; Clarke PH; Rosemeyer MA
    Eur J Biochem; 1973 Apr; 34(1):177-87. PubMed ID: 4633800
    [No Abstract]   [Full Text] [Related]  

  • 16. The amidase regulatory gene (amiR) of Pseudomonas aeruginosa.
    Cousens DJ; Clarke PH; Drew R
    J Gen Microbiol; 1987 Aug; 133(8):2041-52. PubMed ID: 3127537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experiment in enzyme evolution. Studies with Pseudomonas aeruginosa amidase.
    Clarke PH; Drew R
    Biosci Rep; 1988 Apr; 8(2):103-20. PubMed ID: 3136812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antitermination of amidase expression in Pseudomonas aeruginosa is controlled by a novel cytoplasmic amide-binding protein.
    Wilson SA; Wachira SJ; Drew RE; Jones D; Pearl LH
    EMBO J; 1993 Sep; 12(9):3637-42. PubMed ID: 8253087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nucleotide sequence of the amiE gene of Pseudomonas aeruginosa.
    Brammar WJ; Charles IG; Matfield M; Liu CP; Drew RE; Clarke PH
    FEBS Lett; 1987 May; 215(2):291-4. PubMed ID: 3108030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolutionary stability of cytochrome c-551 in Pseudomonas aeruginosa and Pseudomonas fluorescens biotype C.
    Ambler RP
    Biochem J; 1974 Jan; 137(1):3-14. PubMed ID: 4362497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.