These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31080315)

  • 1. Imaging Catalytic Activation of CO
    Li L; Zhang R; Vinson J; Shirley EL; Greeley JP; Guest JR; Chan MKY
    Chem Mater; 2018; 30():. PubMed ID: 31080315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic determination of the surface structure of Cu
    Zhang R; Li L; Frazer L; Chang KB; Poeppelmeier KR; Chan MKY; Guest JR
    Phys Chem Chem Phys; 2018 Nov; 20(43):27456-27463. PubMed ID: 30357202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-edge structures from first principles all-electron Bethe-Salpeter equation calculations.
    Olovsson W; Tanaka I; Puschnig P; Ambrosch-Draxl C
    J Phys Condens Matter; 2009 Mar; 21(10):104205. PubMed ID: 21817425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective molecular adsorption in sub-nanometer cages of a Cu2O surface oxide.
    Mudiyanselage K; An W; Yang F; Liu P; Stacchiola DJ
    Phys Chem Chem Phys; 2013 Jul; 15(26):10726-31. PubMed ID: 23685717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces.
    Bendavid LI; Carter EA
    J Phys Chem B; 2013 Dec; 117(49):15750-60. PubMed ID: 24138294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A density functional theory study of the adsorption behaviour of CO2 on Cu2O surfaces.
    Mishra AK; Roldan A; de Leeuw NH
    J Chem Phys; 2016 Jul; 145(4):044709. PubMed ID: 27475388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111).
    Gharachorlou A; Detwiler MD; Gu XK; Mayr L; Klötzer B; Greeley J; Reifenberger RG; Delgass WN; Ribeiro FH; Zemlyanov DY
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16428-39. PubMed ID: 26158796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Double-shelled Cu
    Huo H; Liu D; Feng H; Tian Z; Liu X; Li A
    Nanoscale; 2020 Jul; 12(26):13912-13917. PubMed ID: 32578651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Different Types of Catalysts for CO2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation.
    Porosoff MD; Myint MN; Kattel S; Xie Z; Gomez E; Liu P; Chen JG
    Angew Chem Int Ed Engl; 2015 Dec; 54(51):15501-5. PubMed ID: 26554872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic hydrogenation of CO
    Esrafili MD; Sharifi F; Dinparast L
    J Mol Graph Model; 2017 Oct; 77():143-152. PubMed ID: 28858642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons.
    Kas R; Kortlever R; Milbrat A; Koper MT; Mul G; Baltrusaitis J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12194-201. PubMed ID: 24817571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic reaction processes revealed by scanning probe microscopy. [corrected].
    Jiang P; Bao X; Salmeron M
    Acc Chem Res; 2015 May; 48(5):1524-31. PubMed ID: 25856470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the Role of Copper Oxide in Electrochemical CO
    Mandal L; Yang KR; Motapothula MR; Ren D; Lobaccaro P; Patra A; Sherburne M; Batista VS; Yeo BS; Ager JW; Martin J; Venkatesan T
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8574-8584. PubMed ID: 29437377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dataset for electronic and optical properties of Y
    Dimakis N; Rodriguez EB; Ackaah-Gyasi KN; Pokhrel M
    Data Brief; 2022 Dec; 45():108671. PubMed ID: 36426012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorrect DFT-GGA predictions of the stability of non-stoichiometric/polar dielectric surfaces: the case of Cu2O(111).
    Nilius N; Fedderwitz H; Groß B; Noguera C; Goniakowski J
    Phys Chem Chem Phys; 2016 Mar; 18(9):6729-33. PubMed ID: 26876056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation of X-ray absorption spectra of As(III) in solution using Monte Carlo simulations.
    Canche-Tello J; Vargas MC; Hérnandez-Cobos J; Ortega-Blake I; Leclercq A; Solari PL; Den Auwer C; Mustre de Leon J
    J Phys Chem A; 2014 Nov; 118(46):10967-73. PubMed ID: 25340994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revolutionizing CO
    Geng Q; Fan L; Chen H; Zhang C; Xu Z; Tian Y; Yu C; Kang L; Yamauchi Y; Li C; Jiang L
    J Am Chem Soc; 2024 Apr; 146(15):10599-10607. PubMed ID: 38567740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts.
    Ren S; Wang B; Zhang H; Ding P; Wang Q
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4066-74. PubMed ID: 25671518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.