BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31080510)

  • 1. Genomic changes in the biological control agent
    Li HS; Heckel G; Huang YH; Fan WJ; Ślipiński A; Pang H
    Evol Appl; 2019 Jun; 12(5):989-1000. PubMed ID: 31080510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Differentiation in Native and Introduced Populations of Cryptolaemus montrouzieri (Coleoptera: Coccinellidae) and Its Implications for Biological Control Programs.
    Li HS; Jin MJ; Ślipiński A; De Clercq P; Pang H
    J Econ Entomol; 2015 Oct; 108(5):2458-64. PubMed ID: 26453735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic insight into diet adaptation in the biological control agent Cryptolaemus montrouzieri.
    Li HS; Huang YH; Chen ML; Ren Z; Qiu BY; De Clercq P; Heckel G; Pang H
    BMC Genomics; 2021 Feb; 22(1):135. PubMed ID: 33632122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population admixture can enhance establishment success of the introduced biological control agent Cryptolaemus montrouzieri.
    Li HS; Zou SJ; De Clercq P; Pang H
    BMC Evol Biol; 2018 Mar; 18(1):36. PubMed ID: 29580229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential displacement of the native
    Ferreira LF; Silva-Torres CSA; Torres JB; Venette RC
    Bull Entomol Res; 2021 Oct; 111(5):605-615. PubMed ID: 34112270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Episodic positive selection at mitochondrial genome in an introduced biological control agent.
    Li HS; Liang XY; Zou SJ; Liu Y; De Clercq P; Ślipiński A; Pang H
    Mitochondrion; 2016 May; 28():67-72. PubMed ID: 26994640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An artificial diet containing plant pollen for the mealybug predator Cryptolaemus montrouzieri.
    Xie J; Wu H; Pang H; De Clercq P
    Pest Manag Sci; 2017 Mar; 73(3):541-545. PubMed ID: 27146580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of
    Qin Z; Wu J; Qiu B; Ali S; Cuthbertson AGS
    Insects; 2019 May; 10(5):. PubMed ID: 31064073
    [No Abstract]   [Full Text] [Related]  

  • 9. Genomic survey provides insights into the evolutionary changes that occurred during European expansion of the invasive mosquitofish (Gambusia holbrooki).
    Vera M; Díez-del-Molino D; García-Marín JL
    Mol Ecol; 2016 Mar; 25(5):1089-105. PubMed ID: 26825431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter- and intraspecific interactions in two mealybug predators Spalgis epius and Cryptolaemus montrouzieri in the presence and absence of prey.
    Dinesh AS; Venkatesha MG
    Bull Entomol Res; 2014 Feb; 104(1):48-55. PubMed ID: 24044725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in life history traits and transcriptome associated with adaptation to diet shifts in the ladybird Cryptolaemus montrouzieri.
    Li HS; Pan C; De Clercq P; Ślipiński A; Pang H
    BMC Genomics; 2016 Apr; 17():281. PubMed ID: 27067125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological and Evolutionary Changes in a Biological Control Agent During Prey Shifts Over Several Generations.
    Chen ML; Wang T; Huang YH; Qiu BY; Li HS; Pang H
    Front Physiol; 2018; 9():971. PubMed ID: 30072921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological effects of compensatory growth during the larval stage of the ladybird, Cryptolaemus montrouzieri.
    Xie J; De Clercq P; Pan C; Li H; Zhang Y; Pang H
    J Insect Physiol; 2015 Dec; 83():37-42. PubMed ID: 26546057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next-generation sequencing-based transcriptome analysis of Cryptolaemus montrouzieri under insecticide stress reveals resistance-relevant genes in ladybirds.
    Zhang Y; Jiang R; Wu H; Liu P; Xie J; He Y; Pang H
    Genomics; 2012 Jul; 100(1):35-41. PubMed ID: 22584066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metals transported through a multi-trophic food chain influence the energy metabolism and immune responses of Cryptolaemus montrouzieri.
    Du C; Wu J; Bashir MH; Shaukat M; Ali S
    Ecotoxicology; 2019 May; 28(4):422-428. PubMed ID: 30868349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of inheritance of feeding potential in natural populations of predatory coccinellid Cryptolaemus montrouzieri Mulsant using isofemale strains.
    Jayanthi PD; Sangeetha P; Verghese A
    J Genet; 2014 Apr; 93(1):113-22. PubMed ID: 24840828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population structure, demographic history and local adaptation of the grass carp.
    Shen Y; Wang L; Fu J; Xu X; Yue GH; Li J
    BMC Genomics; 2019 Jun; 20(1):467. PubMed ID: 31174480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic footprints of a biological invasion: Introduction from Asia and dispersal in Europe of the topmouth gudgeon (Pseudorasbora parva).
    Baltazar-Soares M; Blanchet S; Cote J; Tarkan AS; Záhorská E; Gozlan RE; Eizaguirre C
    Mol Ecol; 2020 Jan; 29(1):71-85. PubMed ID: 31755610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global patterns of genomic and phenotypic variation in the invasive harlequin ladybird.
    Li H; Peng Y; Wang Y; Summerhays B; Shu X; Vasquez Y; Vansant H; Grenier C; Gonzalez N; Kansagra K; Cartmill R; Sujii ER; Meng L; Zhou X; Lövei GL; Obrycki JJ; Sethuraman A; Li B
    BMC Biol; 2023 Jun; 21(1):141. PubMed ID: 37337183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Population genomic analyses reveal a history of range expansion and trait evolution across the native and invaded range of yellow starthistle (Centaurea solstitialis).
    Barker BS; Andonian K; Swope SM; Luster DG; Dlugosch KM
    Mol Ecol; 2017 Feb; 26(4):1131-1147. PubMed ID: 28029713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.