BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31080990)

  • 1. Chloroform as a CO surrogate: applications and recent developments.
    Mondal K; Halder P; Gopalan G; Sasikumar P; Radhakrishnan KV; Das P
    Org Biomol Chem; 2019 May; 17(21):5212-5222. PubMed ID: 31080990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palladium-Catalyzed Aminocarbonylation of Isoquinolines Utilizing Chloroform-COware Chemistry.
    Halder P; Talukdar V; Iqubal A; Das P
    J Org Chem; 2022 Nov; 87(21):13965-13979. PubMed ID: 36217780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.
    Wu XF; Fang X; Wu L; Jackstell R; Neumann H; Beller M
    Acc Chem Res; 2014 Apr; 47(4):1041-53. PubMed ID: 24564478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Sustainable and Versatile Cellulose-based CO Surrogate for Carbonylative Reactions.
    Wang Y; Tian B; Li Y; Li W; Chen Z; Liu S; Li S
    ChemSusChem; 2024 May; 17(9):e202301324. PubMed ID: 38199959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Creation of Novel Toxic Gas Surrogates and the Development of Safe and Facile Catalytic Reactions.
    Konishi H
    Chem Pharm Bull (Tokyo); 2018; 66(1):1-19. PubMed ID: 29311504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ex situ generation of stoichiometric and substoichiometric 12CO and 13CO and its efficient incorporation in palladium catalyzed aminocarbonylations.
    Hermange P; Lindhardt AT; Taaning RH; Bjerglund K; Lupp D; Skrydstrup T
    J Am Chem Soc; 2011 Apr; 133(15):6061-71. PubMed ID: 21446732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions.
    Friis SD; Lindhardt AT; Skrydstrup T
    Acc Chem Res; 2016 Apr; 49(4):594-605. PubMed ID: 26999377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regioselective Pd-catalyzed methoxycarbonylation of alkenes using both paraformaldehyde and methanol as CO surrogates.
    Liu Q; Yuan K; Arockiam PB; Franke R; Doucet H; Jackstell R; Beller M
    Angew Chem Int Ed Engl; 2015 Apr; 54(15):4493-7. PubMed ID: 25693847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonylations of alkenes with CO surrogates.
    Wu L; Liu Q; Jackstell R; Beller M
    Angew Chem Int Ed Engl; 2014 Jun; 53(25):6310-20. PubMed ID: 24866101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in carbonylation chemistry using [
    Nielsen DU; Neumann KT; Lindhardt AT; Skrydstrup T
    J Labelled Comp Radiopharm; 2018 Nov; 61(13):949-987. PubMed ID: 29858516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic Carbonylation and Carboxylation of Organosulfur Compounds via C-S Cleavage.
    Nogi K; Yorimitsu H
    Chem Asian J; 2020 Feb; 15(4):441-449. PubMed ID: 31849193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible Light-Induced Carbonylation Reactions with Organic Dyes as the Photosensitizers.
    Peng JB; Qi X; Wu XF
    ChemSusChem; 2016 Sep; 9(17):2279-83. PubMed ID: 27488198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TFBen (Benzene-1,3,5-triyl triformate): A Powerful and Versatile CO Surrogate.
    Yang H; Zhang J; Chen Z; Wu XF
    Chem Rec; 2022 Feb; 22(2):e202100220. PubMed ID: 34591367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium-Catalyzed Environmentally Benign Acylation.
    Suchand B; Satyanarayana G
    J Org Chem; 2016 Aug; 81(15):6409-23. PubMed ID: 27377566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Renaissance of Sandmeyer-Type Reactions: Conversion of Aromatic C-N Bonds into C-X Bonds (X = B, Sn, P, or CF
    Mo F; Qiu D; Zhang Y; Wang J
    Acc Chem Res; 2018 Feb; 51(2):496-506. PubMed ID: 29368912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of carbonylation catalysis: no need for carbon monoxide.
    Morimoto T; Kakiuchi K
    Angew Chem Int Ed Engl; 2004 Oct; 43(42):5580-8. PubMed ID: 15372547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Alkyl Halides to Ketones: Nickel-Catalyzed Reductive Carbonylation Utilizing Ethyl Chloroformate as the Carbonyl Source.
    Shi R; Hu X
    Angew Chem Int Ed Engl; 2019 May; 58(22):7454-7458. PubMed ID: 30942943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Question of Uncatalyzed CO Insertion into a Hydrazone Double Bond: A Comparative Study Using Different CO Sources and Substrates.
    Liu D; Bauer N; Lu W; Yang X; Wang B
    J Org Chem; 2024 Jul; 89(13):9551-9556. PubMed ID: 38888488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent developments in cyclopropene chemistry.
    Li P; Zhang X; Shi M
    Chem Commun (Camb); 2020 May; 56(41):5457-5471. PubMed ID: 32406444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.