BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31081123)

  • 1. Impact of protein fouling on nanoparticle capture within the Viresolve® Pro and Viresolve® NFP virus removal membranes.
    Fallahianbijan F; Giglia S; Carbrello C; Bell D; Zydney AL
    Biotechnol Bioeng; 2019 Sep; 116(9):2285-2291. PubMed ID: 31081123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing effects of pressure release on virus capture during virus filtration using confocal microscopy.
    Dishari SK; Venkiteshwaran A; Zydney AL
    Biotechnol Bioeng; 2015 Oct; 112(10):2115-22. PubMed ID: 25898823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of membrane structure on the filtrate flux during monoclonal antibody filtration through virus retentive membranes.
    Billups M; Minervini M; Holstein M; Feroz H; Ranjan S; Hung J; Bao H; Li ZJ; Ghose S; Zydney AL
    Biotechnol Prog; 2022 Mar; 38(2):e3231. PubMed ID: 34994527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of solution conditions on virus retention by the Viresolve® NFP filter.
    Dishari SK; Micklin MR; Sung KJ; Zydney AL; Venkiteshwaran A; Earley JN
    Biotechnol Prog; 2015; 31(5):1280-6. PubMed ID: 26081350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein fouling during constant-flux virus filtration: Mechanisms and modeling.
    Peles J; Cacace B; Carbrello C; Giglia S; Zydney AL
    Biotechnol Bioeng; 2023 Nov; 120(11):3357-3367. PubMed ID: 37489799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing the capacity of parvovirus-retentive membranes: performance of the Viresolve Prefilter.
    Bolton GR; Spector S; Lacasse D
    Biotechnol Appl Biochem; 2006 Jan; 43(Pt 1):55-63. PubMed ID: 16207176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of a novel Viresolve NFR virus filter.
    Brough H; Antoniou C; Carter J; Jakubik J; Xu Y; Lutz H
    Biotechnol Prog; 2002; 18(4):782-95. PubMed ID: 12153313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of intermolecular interactions on monoclonal antibody filtration through virus removal membranes.
    Billups M; Minervini M; Holstein M; Feroz H; Ranjan S; Hung J; Zydney AL
    Biotechnol J; 2023 Dec; 18(12):e2300265. PubMed ID: 37641433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of proteins and protein fouling on virus retention during virus removal filtration.
    Afzal MA; Zydney AL
    Biotechnol Bioeng; 2024 Feb; 121(2):710-718. PubMed ID: 37994529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virus filtration of high-concentration monoclonal antibody solutions.
    Marques BF; Roush DJ; Göklen KE
    Biotechnol Prog; 2009; 25(2):483-91. PubMed ID: 19353736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving high mass-throughput of therapeutic proteins through parvovirus retentive filters.
    Bolton GR; Basha J; Lacasse DP
    Biotechnol Prog; 2010; 26(6):1671-7. PubMed ID: 20859931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A validatible porosimetric technique for verifying the integrity of virus-retentive membranes.
    Phillips MW; DiLeo AJ
    Biologicals; 1996 Sep; 24(3):243-53. PubMed ID: 8978924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size exclusion removal of model mammalian viruses using a unique membrane system, Part II: Module qualification and process simulation.
    DiLeo AJ; Vacante DA; Deane EF
    Biologicals; 1993 Sep; 21(3):287-96. PubMed ID: 8117442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into the performance characteristics of the Planova-series hollow-fiber parvovirus filters using confocal and electron microscopy.
    Nazem-Bokaee H; Chen D; O'Donnell SM; Zydney AL
    Biotechnol Bioeng; 2019 Aug; 116(8):2010-2017. PubMed ID: 30982955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving a Successful Scale-Down Model and Optimized Economics through Parvovirus Filter Validation using Purified TrueSpikeTM Viruses.
    De Vilmorin P; Slocum A; Jaber T; Schaefer O; Ruppach H; Genest P
    PDA J Pharm Sci Technol; 2015; 69(3):440-9. PubMed ID: 26048749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Size-based analysis of virus removal filter fouling using fractionated protein aggregates.
    Tsukamoto K; Hamamoto R; Oguri R; Miura A; Iwasaki T; Sukegawa T
    Biotechnol Prog; 2024; 40(1):e3391. PubMed ID: 37733879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A consensus rating method for small virus-retentive filters. II. Method evaluation.
    Brorson K; Lute S; Haque M; Martin J; Sato T; Moroe I; Morgan M; Krishnan M; Campbell J; Genest P; Parrella J; Dolan S; Martin S; Tarrach K; Levy R; ; Aranha H; Bailey M; Bender J; Carter J; Chen Q; Dowd C; Jani R; Jen D; Kidd S; Meltzer T; Remington K; Rice I; Romero C; Sato T; Jornitz M; Sekura CM; Sofer G; Specht R; Wojciechowski P
    PDA J Pharm Sci Technol; 2008; 62(5):334-43. PubMed ID: 19055229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of protein fouling on filtrate flux and virus breakthrough behaviors during virus filtration process.
    Suh D; Jin H; Park H; Lee C; Cho YH; Baek Y
    Biotechnol Bioeng; 2023 Jul; 120(7):1891-1901. PubMed ID: 37144573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein fouling of virus filtration membranes: effects of membrane orientation and operating conditions.
    Syedain ZH; Bohonak DM; Zydney AL
    Biotechnol Prog; 2006; 22(4):1163-9. PubMed ID: 16889394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of viral filtration performance of monoclonal antibodies based on biophysical properties of feed.
    Rayfield WJ; Roush DJ; Chmielowski RA; Tugcu N; Barakat S; Cheung JK
    Biotechnol Prog; 2015; 31(3):765-74. PubMed ID: 25919945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.