These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 31081247)

  • 1. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
    Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X
    Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary.
    Lan D; Shang Y; Su H; Liang M; Liu Y; Li H; Feng Q; Cao X; Dong H
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4971-4981. PubMed ID: 34503336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
    Xie R; Liang Z; Ai Y; Zheng W; Xiong J; Xu P; Liu Y; Ding M; Gao J; Wang J; Liang Q
    Nat Protoc; 2021 Feb; 16(2):937-964. PubMed ID: 33318693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired Microfibers with Embedded Perfusable Helical Channels.
    Xu P; Xie R; Liu Y; Luo G; Ding M; Liang Q
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28639435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic-directed biomimetic
    Guo Y; Yan J; Xin JH; Wang L; Yu X; Fan L; Liu P; Yu H
    Lab Chip; 2021 Jun; 21(13):2594-2604. PubMed ID: 34008681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip.
    Wei D; Sun J; Bolderson J; Zhong M; Dalby MJ; Cusack M; Yin H; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2017 May; 9(17):14606-14617. PubMed ID: 28157291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered Microfibers for Tissue Engineering.
    Su R; Ai Y; Wang J; Wu L; Sun H; Ding M; Xie R; Liang Q
    ACS Appl Bio Mater; 2024 Sep; 7(9):5823-5840. PubMed ID: 39145987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation regulated bioactive hydrogel as the bioink with desirable moldability for microfluidic biofabrication.
    Liu X; Zuo Y; Sun J; Guo Z; Fan H; Zhang X
    Carbohydr Polym; 2017 Dec; 178():8-17. PubMed ID: 29050618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple Spinning of Heterogeneous Hollow Microfibers on Chip.
    Yu Y; Wei W; Wang Y; Xu C; Guo Y; Qin J
    Adv Mater; 2016 Aug; 28(31):6649-55. PubMed ID: 27185309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Phase Inversion-Based Microfluidic Fabrication of Helical Microfibers towards Versatile Artificial Abdominal Skin.
    Liu JD; Du XY; Chen S
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25089-25096. PubMed ID: 34505753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of 3D Biomimetic Microfluidic Networks in Hydrogels.
    Heintz KA; Bregenzer ME; Mantle JL; Lee KH; West JL; Slater JH
    Adv Healthc Mater; 2016 Sep; 5(17):2153-60. PubMed ID: 27239785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic technologies for vasculature biomimicry.
    Hu C; Chen Y; Tan MJA; Ren K; Wu H
    Analyst; 2019 Jul; 144(15):4461-4471. PubMed ID: 31162494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired Helical Microfibers from Microfluidics.
    Yu Y; Fu F; Shang L; Cheng Y; Gu Z; Zhao Y
    Adv Mater; 2017 May; 29(18):. PubMed ID: 28266759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers.
    Shao L; Gao Q; Zhao H; Xie C; Fu J; Liu Z; Xiang M; He Y
    Small; 2018 Nov; 14(44):e1802187. PubMed ID: 30253060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.