BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31081811)

  • 21. 3D Bioprinting Using Cross-Linker-Free Silk-Gelatin Bioink for Cartilage Tissue Engineering.
    Singh YP; Bandyopadhyay A; Mandal BB
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33684-33696. PubMed ID: 31453678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Silk-Based Bioinks for 3D Bioprinting.
    Chawla S; Midha S; Sharma A; Ghosh S
    Adv Healthc Mater; 2018 Apr; 7(8):e1701204. PubMed ID: 29359861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of ionic strength on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface.
    Tang X; Qiao X; Miller R; Sun K
    J Sci Food Agric; 2016 Dec; 96(15):4918-4928. PubMed ID: 27256721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking.
    Wang P; Qi C; Yu Y; Yuan J; Cui L; Tang G; Wang Q; Fan X
    Appl Biochem Biotechnol; 2015 Sep; 177(2):472-85. PubMed ID: 26189105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation of antibacterial silk fibroin membranes via tyrosinase-catalyzed coupling of ε-polylysine.
    Wang P; Deng C; Yuan J; Yu Y; Cui L; Su M; Wang Q; Fan X
    Biotechnol Appl Biochem; 2016; 63(2):163-9. PubMed ID: 25757371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.
    Sun K; Li R; Jiang W; Sun Y; Li H
    Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tunable Enzymatically Cross-Linked Silk Fibroin Tubular Conduits for Guided Tissue Regeneration.
    Carvalho CR; Costa JB; da Silva Morais A; López-Cebral R; Silva-Correia J; Reis RL; Oliveira JM
    Adv Healthc Mater; 2018 Sep; 7(17):e1800186. PubMed ID: 29999601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins.
    Yang M; Asakura T
    J Biochem; 2005 Jun; 137(6):721-9. PubMed ID: 16002994
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A study on the flow stability of regenerated silk fibroin aqueous solution.
    Wang H; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2005 Jul; 36(1-2):66-70. PubMed ID: 15916801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D Bioprinting of Self-Standing Silk-Based Bioink.
    Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL
    Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution.
    Tao W; Li M; Zhao C
    Int J Biol Macromol; 2007 Apr; 40(5):472-8. PubMed ID: 17173967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Printed Silk Microelectrode Arrays for Electrophysiological Recording and Controlled Drug Delivery.
    Adly N; Teshima TF; Hassani H; Boustani GA; Weiß LJK; Cheng G; Alexander J; Wolfrum B
    Adv Healthc Mater; 2023 Jul; 12(17):e2202869. PubMed ID: 36827235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dielectric breakdown strength of regenerated silk fibroin films as a function of protein conformation.
    Dickerson MB; Fillery SP; Koerner H; Singh KM; Martinick K; Drummy LF; Durstock MF; Vaia RA; Omenetto FG; Kaplan DL; Naik RR
    Biomacromolecules; 2013 Oct; 14(10):3509-14. PubMed ID: 23987229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wafer-Scale Multilayer Fabrication for Silk Fibroin-Based Microelectronics.
    Kook G; Jeong S; Kim SH; Kim MK; Lee S; Cho IJ; Choi N; Lee HJ
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):115-124. PubMed ID: 30480426
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence factors analysis on the formation of silk I structure.
    Ming J; Pan F; Zuo B
    Int J Biol Macromol; 2015 Apr; 75():398-401. PubMed ID: 25677178
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insoluble and flexible silk films containing glycerol.
    Lu S; Wang X; Lu Q; Zhang X; Kluge JA; Uppal N; Omenetto F; Kaplan DL
    Biomacromolecules; 2010 Jan; 11(1):143-50. PubMed ID: 19919091
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Near-infrared characterization on the secondary structure of regenerated Bombyx mori silk fibroin.
    Mo C; Wu P; Chen X; Shao Z
    Appl Spectrosc; 2006 Dec; 60(12):1438-41. PubMed ID: 17217594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flexible bio-composites based on silks and celluloses.
    Heo S; Yun YS; Cho SY; Jin HJ
    J Nanosci Nanotechnol; 2012 Jan; 12(1):811-4. PubMed ID: 22524062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-step 3D printed intelligent silk fibroin artificial skin with built-in electronics and microfluidics.
    Guo M; Li Q; Gao B; He B
    Analyst; 2021 Sep; 146(19):5934-5941. PubMed ID: 34570843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering.
    Du X; Wei D; Huang L; Zhu M; Zhang Y; Zhu Y
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109731. PubMed ID: 31349472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.